
Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20241

Build a lightweight monitor

to identify SQL workload tuning potential

Kai Stroh

Product Manager

UBS Hainer

kai.stroh@ubs-hainer.com

mailto:Kai.stroh@ubs-hainer.com

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20242

• Objectives:
• Capture SQL statistics from the DSC

• Explain the statements found in the DSC

• Save results to build a history

• Combine statistics and access path information

• Learn how to spot potential performance problems

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20243

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20244

Create the explain tables

• Use stored procedure SYSPROC.ADMIN_EXPLAIN_MAINT
with the following parameters:

• action = STANDARDIZE_AND_CREATE
• table-set = PLAN_TABLE

 DSN_STATEMNT_TABLE
 DSN_STATEMENT_CACHE_TABLE

• Creates 3 explain tables and 7 indexes as of Db2 V13 FL505

• Existing explain tables are updated to the newest structure

• REXX available for download

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20245

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20246

Add tables to store
historic information

• Creating history
tables makes it
easier to spot
trends

• Add column for collect
time

SET SCHEMA = "your-schema";

CREATE TABLE PLAN_TABLE_H

 LIKE PLAN_TABLE

 IN DATABASE "your-dbname";

CREATE TABLE DSN_STATEMENT_CACHE_TABLE_H

 LIKE DSN_STATEMENT_CACHE_TABLE

 IN DATABASE "your-dbname";

COMMIT;

ALTER TABLE DSN_STATEMENT_CACHE_TABLE_H

 ADD COLLECT_TS TIMESTAMP NOT NULL;

COMMIT;

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20247

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20248

Capture SQL statistics from the DSC

• Make sure IFCID 318 is active

• To get all statements, SYSADM authorization is required

Run this Db2 command:
-STA TRACE(MON) CLASS(30) IFCID(318)

After some time, run these SQL statements:
SET SCHEMA = "your-schema";

TRUNCATE TABLE "DSN_STATEMENT_CACHE_TABLE";

SET CURRENT SQLID = 'your-schema';

EXPLAIN STMTCACHE ALL;

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 20249

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202410

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202411

Build a history

• DSC dump is now in DSN_STATEMENT_CACHE_TABLE

• Be aware that counters are accumulative!

• Counters are set back to 0 when trace is stopped and restarted

• Stopping and restarting the trace does not remove the
statements from the DSC!

Cycle the trace in order to reset the counters:
-STO TRACE(MON) CLASS(30)

-STA TRACE(MON) CLASS(30) IFCID(318)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202412

Build a history

• Copy rows from DSN_STATEMENT_CACHE_TABLE into
DSN_STATEMENT_CACHE_TABLE_H

INSERT INTO DSN_STATEMENT_CACHE_TABLE_H (

 <list of 103 columns>

, COLLECT_TS

)

SELECT

 <list of 103 columns>

, CURRENT TIMESTAMP AS COLLECT_TS

FROM DSN_STATEMENT_CACHE_TABLE

WHERE STAT_EXECB > 0;

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202413

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202414

Explain the data

• EXPLAIN the statements from the DSC dump
• Read the DSN_STATEMENT_CACHE_TABLE and explain each

statement

• Use EXPLAIN STMTCACHE STMTID xxx (xxx is the STMT_ID)

• This gives you the access path that Db2 actually used when
the statement was prepared and entered the cache, not the
access path Db2 would use now

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202415

Explain the data

• Some explains will fail because the statement has just been
removed from the cache – should not be too many

• REXX available for download

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202416

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202417

Build a history

• Copy the result of the PLAN_TABLE to PLAN_TABLE_H to
build the access path history

• If you would like to have a history of the optimizer estimates,
you can do the same with DSN_STATEMNT_TABLE

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202418

Result

• A history of dynamic statements, which makes it easy to build
trending statistics for each SQL

• Statements that just entered the cache:
• Statistical columns contain values from since the statement was cached

• Statements that were already in the cache last time:
• Statistical columns contain values from since the trace was cycled

• → Can calculate sums over statistical columns

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202419

Result

• By running these DSC dumps and explain 3-4 times a day, you
create a history of SQL statements with information about
CPU, I/O, LOCK, LOG…

• You have a history of the access path
• Find out when an access path change occurred

• Which indexes were in use before and after

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202420

Build
statement

history

Explain
statements

Build
explain
history

Capture
statements

Identify

problems

Create

explain tables

You are here

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202421

Combining the data

• Performance data:
• You only need DSN_STATEMENT_CACHE_TABLE_H

• A statement may change its STMT_ID over time

• But it is uniquely identified by STMT_HASHID2

• You can now join DSN_STATEMENT_CACHE_TABLE_H
(SCT) and PLAN_TABLE_H (PT)

• SCT.STMT_ID = PT.QUERYNO

• SCT.GROUP_MEMBER = PT.GROUP_MEMBER

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202422

Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202423

Statements without parameter markers

• If your installation is running many SQLs without parameter
markers, you get different hash-keys for what is essentially the
same SQL statement

• Example: The next SQL with another CUST_NO occupies
another slot in the DSC

SELECT * FROM CUSTOMER WHERE CUST_NO = 492954;
SELECT * FROM CUSTOMER WHERE CUST_NO = 82397;
SELECT * FROM CUSTOMER WHERE CUST_NO = 104329;

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202424

Statements without parameter markers

DO I = 1 TO CANDIDATES.0
 SQLSTMT = "UPDATE EMP SET SALARY = SALARY * 1.1 WHERE EMPNO = " || CANDIDATES.I
 ADDRESS DSNREXX "EXECSQL EXECUTE IMMEDIATE :SQLSTMT"
END

SQLSTMT = "UPDATE EMP SET SALARY = SALARY * 1.1 WHERE EMPNO = ?"
ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"
DO I = 1 TO CANDIDATES.0
 EMPNO = CANDIDATES.I
 ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :EMPNO"
END

The “proper” way to handle this would be to convert the above code to:

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202425

Statements without parameter markers

• Using literals generates a lot of overhead – preparing such a
simple SQL is most likely more expensive than its execution

• Quick and dirty programming → significant avoidable
overhead

• REXX programs tend to use literals instead of parameter
markers

• Recommendation: Consider using the parameter
CONCENTRATE for your packages

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202426

Solution

• A good starting point is to rebind the REXX packages

• Ways to enable CONCENTRATE:
• As discussed, as Bind parameter

• SQL PREPARE as additional attribute

• JDBC on connection level, setDBStatementConcentrator(2)

• In ODBC init file: LITERALREPLACEMENT=1

• If your installation is using many simple SQL statements with
literals, you should already see a significant CPU reduction

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202427

Effect of CONCENTRATE for DSC dumps

• After applying CONCENTRATE, you will find SQL statements
with an ampersand (&) in DSN_STATEMENT_CACHE_TABLE

• Db2 is now replacing the literals with ampersands while the
statements with real parameter markers still have question
marks

• Not a problem for EXPLAIN STMTCACHE STMTID xxx

• To explain the statement manually, replace “&” with “?” before
EXPLAIN

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202428

Enable CONCENTRATE for REXX and Java programs

• REXX: Run the REBIND commands below

• Java programs:
• Bind copy the packages into a new collection – see SDSNSAMP(DSNTIJLC)

• Either: Set the jdbcCollection connection property

• Or: Use profile tables to set a collection for a given Java application

REBIND PACKAGE(DSNREXCS.DSNREXX.(*)) CONCENTRATESTMT(YES)

REBIND PACKAGE(DSNREXRR.DSNREXX.(*)) CONCENTRATESTMT(YES)

REBIND PACKAGE(DSNREXRS.DSNREXX.(*)) CONCENTRATESTMT(YES)

REBIND PACKAGE(DSNREXUR.DSNREXX.(*)) CONCENTRATESTMT(YES)

REBIND PACKAGE(DSNREXX.DSNREXX.(*)) CONCENTRATESTMT(YES)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202429

Minor caveat

• In really rare cases, you need to have control over the re-
optimization (by using CONCENTRATE, you lose a detailed check
on the host variable/literal)

• Might happen if column values are skewed

• This can be solved by adding a REOPT
• REOPT(ONCE): Access path is calculated when the statement is first

executed and stays as it is until the statement leaves the cache

• REOPT(AUTO): Access path is re-optimized when parameter values change
significantly

• REOPT(ALWAYS): Access path is calculated every time the statement is
executed (no caching in the DSC)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202430

Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202431

• Most relevant: Top CPU
consumers, top elapsed
time

• STMT_HASHID2 allows
tracking a statement even
if it leaves / reenters the
cache and gets a new ID

SELECT

HEX(STMT_HASHID2) AS STMT_HASHID2

, SUM(STAT_EXEC) AS EXECUTIONS

, SUM(STAT_CPU) AS CPU_TIME

, SUM(STAT_CPU) / SUM(STAT_EXEC) AS CPU_PER_EXEC

, SUM(STAT_ELAP) AS ELAPSED_TIME

, SUM(STAT_ELAP) / SUM(STAT_EXEC) AS ELAP_PER_EXEC

, SUM(STAT_GPAGB) AS GETPAGES

, SUM(STAT_EROWB) AS ROWS_EXAMINED

, SUM(STAT_PROWB) AS ROWS_PROCESSED

, DOUBLE(SUM(STAT_EROWB)) / SUM(STAT_PROWB) * 100 AS RATIO

, SUM(STAT_RIDLIMTB) AS STAT_RIDLIMTB

, SUM(STAT_RIDSTORB) AS STAT_RIDSTORB

, VARCHAR(STMT_TEXT, 200) AS SQL

FROM DSN_STATEMENT_CACHE_TABLE_H

WHERE COLLECT_TS > CURRENT TIMESTAMP - 3 DAYS

GROUP BY STMT_HASHID2, VARCHAR(STMT_TEXT, 200)

HAVING SUM(STAT_EXEC) > 0

ORDER BY 3 DESC

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202432

Break down elapsed time

• Elapsed time = time required for processing + wait times

• High SYNCIO / ELAPSED (> 50-60%)
• Rows are processed in an order different from clustering

• Tablespace may just need a REORG

• Bufferpool size or parameters incorrect (separate analysis)

• High LOCK_WAITS / ELAPSED
• Other Queries are locking tables or pages

• Order of processing? Commit frequency?

• Quick and dirty solution: Use row level locking (but watch for lock escalation)

• Java: Choose isolation level (SYSLH100 / SYSLH200 / SYSLH300
SYSLH400)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202433

Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202434

Access path changes

• Reasons:
• Indexes created or dropped

• RUNSTATS updated

• Table sizes changed significantly

• …

• Static SQL: Access path calculated at BIND time

• Dynamic SQL: Access path calculated as statement enters the DSC

• Created an index, but your dynamic SQL is not using it? Invalidate
DSC (or wait for the statement to leave and re-enter the DSC)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202435

Finding access path changes

• First, identify the STMT_HASHID2 of your statement
SELECT

 HEX(STMT_HASHID2) AS STMT_HASHID2,

 STAT_CPU / STAT_EXEC AS CPU_PER_EXEC,

 COLLECT_TS AS COLLECT_TS,

 VARCHAR(STMT_TEXT, 200) AS STMT_TEXT

FROM DSN_STATEMENT_CACHE_TABLE_H

WHERE VARCHAR(STMT_TEXT, 1000) LIKE

'SELECT * FROM TMF.S1306#11_1_TB1%'

ORDER BY COLLECT_TS

STMT_HASHID2 STAT_CPU CPU_PER_EXEC COLLECT_TS STMT_TEXT

---------------- -------- ------------ -------------------------- ---

95286BCA05F8FFB7 0.00189 0.00189 2024-09-20 15:10:08.112918 SELECT * FROM TMF.S1306#11_1_TB1 WHERE NAME = 'LE' ORDER BY DOB

95286BCA05F8FFB7 0.03804 0.03804 2024-09-20 15:15:08.34794 SELECT * FROM TMF.S1306#11_1_TB1 WHERE NAME = 'LE' ORDER BY DOB

I have a feeling that this statement

is slower than it used to be…

Aha! Over 20 times the

CPU per execution

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202436

Finding access path changes

• Then look at the historic access paths

QUERYNO QBLOCKNO PLANNO METHOD CREATOR TNAME TABNO ACCESSTYPE MATCHCOLS ACCESSCREATOR ACCESSNAME

------- -------- ------ ------ ------- -------------- ----- ---------- --------- ------------- -----------------

 211 1 1 0 TMF S1306#11_1_TB1 1 I 1 TMF S1306#11_1_TB1_X1

 211 1 2 3 0 0

 215 1 1 0 TMF S1306#11_1_TB1 1 R 0

 215 1 2 3 0 0

STMT_HASHID2 identifies

your SQL statement

We went from index

access to tablespace scan

SELECT ...

FROM DSN_STATEMENT_CACHE_TABLE_H H

INNER JOIN PLAN_TABLE_H P

ON H.STMT_ID = P.QUERYNO

WHERE HEX(H.STMT_HASHID2) = '95286BCA05F8FFB7'

ORDER BY P.QUERYNO, P.PLANNO

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202437

Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202438

RID list problems

• RID list: List containing row positions (RIDs) of candidate rows
that Db2 builds when evaluating an expression using an index

• Size of a RID list is limited (~ 16.7 million RIDs)

• Size of the RID pools is limited (ZPARM MAXRBLK), overflow
to DSNDB07 possible

• If Db2 wants to use a RID list but can’t, an alternative access
path is calculated on the fly

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202439

RID list problems

• Difficult to analyze

• Explain looks different from the real access plan

• Worst case: Tablespace scan even though explain looks good

• STAT_RIDLIMTB: Number of times RID list exceeded
maximum allowed for a query

• STAT_RIDSTORB: Number of times RID list ran out of space

• Increasing the RID pool size is a possible solution (or fix the
index setup – better filtering can help)

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202440

Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202441

Other indicators

• DSC contains real values (not estimates), for example:
• STAT_SYNRB → Synchronous Buffer Reads (sync. IO)

• STAT_SORTB → Number of Sorts for each SQL statement

• STAT_RSCANB → Number of tablespace scans

• STAT_INDXB → Number of index scans

• STAT_GPAGB → Number of getpages

• Monitor these over time

• Look at the top consumers, also look at values per execution

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202442

Other indicators

• Examined rows (STAT_EROWB) vs. processed rows
(STAT_PROWB): Ratio is helpful to find bad access patterns

• High ratio is an indicator for access patterns with index issues

• Example: Tablespace scan, 100,000 rows, only five row
matches the WHERE condition

• STAT_EROWB = 100,000, STAT_PROWB = 5, Ratio = 20,000

• Good starting point for the analysis, but also look at absolute
values

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202443

Final words

• This just scratched the surface. There are many
more statistics to look at, and also things like
static SQL, bufferpool configuration, etc.

• It’s great to look at the current state of affairs, but
much more value can come from trends
(=changes over time)

• Implement changes carefully as they never affect
a single statement only

• Measure, measure, measure
Picture: deviantart.com, Creative

Commons Attribution 3.0 License

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202444

Don’t feel like doing it yourself?

• Software that does the heavy lifting for you is available

• Ours is called SQLQC.

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202445

Don’t feel like doing it yourself?

• Software that does the heavy lifting for you is available

• Ours is called SQLQC.

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202446

Don’t feel like doing it yourself?

• Software that does the heavy lifting for you is available

• Ours is called SQLQC.

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202447

Don’t feel like doing it yourself?

• Software that does the heavy lifting for you is available

• Ours is called SQLQC.

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202448

Feel like doing it yourself?

• Download sample JCL and REXX:
https://www.ubs-hainer.com/downloads/NEDB2UG.zip

• Contains four jobs and two REXX programs

• Look at readme.txt for installation and usage instructions

https://www.ubs-hainer.com/downloads/NEDB2UG.zip

Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202449

Thank you for your attention

Questions?

kai.stroh@ubs-hainer.com

mailto:Kai.stroh@ubs-hainer.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49

