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• Objectives:
• Capture SQL statistics from the DSC

• Explain the statements found in the DSC

• Save results to build a history

• Combine statistics and access path information

• Learn how to spot potential performance problems
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Create the explain tables

• Use stored procedure SYSPROC.ADMIN_EXPLAIN_MAINT 
with the following parameters:

• action = STANDARDIZE_AND_CREATE
• table-set = PLAN_TABLE

   DSN_STATEMNT_TABLE
   DSN_STATEMENT_CACHE_TABLE

• Creates 3 explain tables and 7 indexes as of Db2 V13 FL505

• Existing explain tables are updated to the newest structure

• REXX available for download
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Add tables to store
historic information

• Creating history
tables makes it
easier to spot
trends

• Add column for collect 
time

SET SCHEMA = "your-schema";

CREATE TABLE PLAN_TABLE_H 

        LIKE PLAN_TABLE   

        IN DATABASE "your-dbname";

CREATE TABLE DSN_STATEMENT_CACHE_TABLE_H

        LIKE DSN_STATEMENT_CACHE_TABLE

        IN DATABASE "your-dbname";

COMMIT;

ALTER TABLE DSN_STATEMENT_CACHE_TABLE_H

  ADD COLLECT_TS TIMESTAMP NOT NULL;

COMMIT;
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Capture SQL statistics from the DSC

• Make sure IFCID 318 is active

• To get all statements, SYSADM authorization is required

Run this Db2 command:
-STA TRACE(MON) CLASS(30) IFCID(318)

After some time, run these SQL statements:
SET SCHEMA = "your-schema";

TRUNCATE TABLE "DSN_STATEMENT_CACHE_TABLE";

SET CURRENT SQLID = 'your-schema';

EXPLAIN STMTCACHE ALL;
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Build a history

• DSC dump is now in DSN_STATEMENT_CACHE_TABLE

• Be aware that counters are accumulative!

• Counters are set back to 0 when trace is stopped and restarted

• Stopping and restarting the trace does not remove the 
statements from the DSC!

Cycle the trace in order to reset the counters:
-STO TRACE(MON) CLASS(30)

-STA TRACE(MON) CLASS(30) IFCID(318)
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Build a history

• Copy rows from DSN_STATEMENT_CACHE_TABLE into 
DSN_STATEMENT_CACHE_TABLE_H

INSERT INTO DSN_STATEMENT_CACHE_TABLE_H (

  <list of 103 columns>

, COLLECT_TS

)

SELECT

 <list of 103 columns>

, CURRENT TIMESTAMP AS COLLECT_TS

FROM DSN_STATEMENT_CACHE_TABLE

WHERE STAT_EXECB > 0;
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Explain the data

• EXPLAIN the statements from the DSC dump
• Read the DSN_STATEMENT_CACHE_TABLE and explain each 

statement

• Use EXPLAIN STMTCACHE STMTID xxx (xxx is the STMT_ID)

• This gives you the access path that Db2 actually used when 
the statement was prepared and entered the cache, not the 
access path Db2 would use now
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Explain the data

• Some explains will fail because the statement has just been 
removed from the cache – should not be too many

• REXX available for download



Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202416

Build
statement

history

Explain 
statements

Build
explain
history

Capture 
statements

Identify

problems

Create 

explain tables

You are here



Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202417

Build a history

• Copy the result of the PLAN_TABLE to PLAN_TABLE_H to 
build the access path history

• If you would like to have a history of the optimizer estimates, 
you can do the same with DSN_STATEMNT_TABLE
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Result

• A history of dynamic statements, which makes it easy to build 
trending statistics for each SQL

• Statements that just entered the cache: 
• Statistical columns contain values from since the statement was cached

• Statements that were already in the cache last time:
• Statistical columns contain values from since the trace was cycled

• → Can calculate sums over statistical columns
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Result

• By running these DSC dumps and explain 3-4 times a day, you 
create a history of SQL statements with information about 
CPU, I/O, LOCK, LOG…

• You have a history of the access path
• Find out when an access path change occurred

• Which indexes were in use before and after
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Combining the data

• Performance data:
• You only need DSN_STATEMENT_CACHE_TABLE_H

• A statement may change its STMT_ID over time

• But it is uniquely identified by STMT_HASHID2

• You can now join DSN_STATEMENT_CACHE_TABLE_H 
(SCT) and PLAN_TABLE_H (PT)

• SCT.STMT_ID = PT.QUERYNO

• SCT.GROUP_MEMBER = PT.GROUP_MEMBER
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Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators
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Statements without parameter markers

• If your installation is running many SQLs without parameter 
markers, you get different hash-keys for what is essentially the 
same SQL statement

• Example: The next SQL with another CUST_NO occupies 
another slot in the DSC

SELECT * FROM CUSTOMER WHERE CUST_NO = 492954;
SELECT * FROM CUSTOMER WHERE CUST_NO = 82397;
SELECT * FROM CUSTOMER WHERE CUST_NO = 104329;
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Statements without parameter markers

DO I = 1 TO CANDIDATES.0
  SQLSTMT = "UPDATE EMP SET SALARY = SALARY * 1.1 WHERE EMPNO = " || CANDIDATES.I
  ADDRESS DSNREXX "EXECSQL EXECUTE IMMEDIATE :SQLSTMT"                    
END 

SQLSTMT = "UPDATE EMP SET SALARY = SALARY * 1.1 WHERE EMPNO = ?"
ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"
DO I = 1 TO CANDIDATES.0
  EMPNO = CANDIDATES.I
  ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :EMPNO"
END 

The “proper” way to handle this would be to convert the above code to:
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Statements without parameter markers

• Using literals generates a lot of overhead – preparing such a 
simple SQL is most likely more expensive than its execution

• Quick and dirty programming → significant avoidable 
overhead

• REXX programs tend to use literals instead of parameter 
markers

• Recommendation: Consider using the parameter 
CONCENTRATE for your packages
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Solution

• A good starting point is to rebind the REXX packages

• Ways to enable CONCENTRATE:
• As discussed, as Bind parameter

• SQL PREPARE as additional attribute

• JDBC on connection level, setDBStatementConcentrator(2)

• In ODBC init file: LITERALREPLACEMENT=1

• If your installation is using many simple SQL statements with 
literals, you should already see a significant CPU reduction
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Effect of CONCENTRATE for DSC dumps

• After applying CONCENTRATE, you will find SQL statements 
with an ampersand (&) in DSN_STATEMENT_CACHE_TABLE

• Db2 is now replacing the literals with ampersands while the 
statements with real parameter markers still have question 
marks

• Not a problem for EXPLAIN STMTCACHE STMTID xxx

• To explain the statement manually, replace “&” with “?” before 
EXPLAIN
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Enable CONCENTRATE for REXX and Java programs

• REXX: Run the REBIND commands below

• Java programs:
• Bind copy the packages into a new collection – see SDSNSAMP(DSNTIJLC)

• Either: Set the jdbcCollection connection property

• Or: Use profile tables to set a collection for a given Java application

REBIND PACKAGE(DSNREXCS.DSNREXX.(*)) CONCENTRATESTMT(YES) 

REBIND PACKAGE(DSNREXRR.DSNREXX.(*)) CONCENTRATESTMT(YES) 

REBIND PACKAGE(DSNREXRS.DSNREXX.(*)) CONCENTRATESTMT(YES) 

REBIND PACKAGE(DSNREXUR.DSNREXX.(*)) CONCENTRATESTMT(YES) 

REBIND PACKAGE(DSNREXX.DSNREXX.(*)) CONCENTRATESTMT(YES) 
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Minor caveat

• In really rare cases, you need to have control over the re-
optimization (by using CONCENTRATE, you lose a detailed check 
on the host variable/literal)

• Might happen if column values are skewed

• This can be solved by adding a REOPT
• REOPT(ONCE): Access path is calculated when the statement is first 

executed and stays as it is until the statement leaves the cache

• REOPT(AUTO): Access path is re-optimized when parameter values change 
significantly

• REOPT(ALWAYS): Access path is calculated every time the statement is 
executed (no caching in the DSC)
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Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators
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• Most relevant: Top CPU 
consumers, top elapsed
time

• STMT_HASHID2 allows
tracking a statement even
if it leaves / reenters the
cache and gets a new ID

SELECT

HEX(STMT_HASHID2)                 AS STMT_HASHID2

, SUM(STAT_EXEC)                    AS EXECUTIONS

, SUM(STAT_CPU)                     AS CPU_TIME

, SUM(STAT_CPU)  / SUM(STAT_EXEC)   AS CPU_PER_EXEC

, SUM(STAT_ELAP)                    AS ELAPSED_TIME

, SUM(STAT_ELAP) / SUM(STAT_EXEC)   AS ELAP_PER_EXEC

, SUM(STAT_GPAGB)                   AS GETPAGES

, SUM(STAT_EROWB)                   AS ROWS_EXAMINED

, SUM(STAT_PROWB)                   AS ROWS_PROCESSED

, DOUBLE(SUM(STAT_EROWB)) / SUM(STAT_PROWB) * 100 AS RATIO

, SUM(STAT_RIDLIMTB)                AS STAT_RIDLIMTB

, SUM(STAT_RIDSTORB)                AS STAT_RIDSTORB

, VARCHAR(STMT_TEXT, 200)           AS SQL

FROM DSN_STATEMENT_CACHE_TABLE_H

WHERE COLLECT_TS > CURRENT TIMESTAMP - 3 DAYS

GROUP BY STMT_HASHID2, VARCHAR(STMT_TEXT, 200)

HAVING SUM(STAT_EXEC) > 0

ORDER BY 3 DESC
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Break down elapsed time

• Elapsed time = time required for processing + wait times

• High SYNCIO / ELAPSED (> 50-60%)
• Rows are processed in an order different from clustering

• Tablespace may just need a REORG

• Bufferpool size or parameters incorrect (separate analysis) 

• High LOCK_WAITS / ELAPSED
• Other Queries are locking tables or pages

• Order of processing? Commit frequency?

• Quick and dirty solution: Use row level locking (but watch for lock escalation)

• Java: Choose isolation level (SYSLH100 / SYSLH200 / SYSLH300 
SYSLH400)
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Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators
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Access path changes

• Reasons:
• Indexes created or dropped

• RUNSTATS updated

• Table sizes changed significantly

• …

• Static SQL: Access path calculated at BIND time

• Dynamic SQL: Access path calculated as statement enters the DSC

• Created an index, but your dynamic SQL is not using it? Invalidate 
DSC (or wait for the statement to leave and re-enter the DSC)
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Finding access path changes

• First, identify the STMT_HASHID2 of your statement
SELECT

  HEX(STMT_HASHID2)       AS STMT_HASHID2,

  STAT_CPU / STAT_EXEC    AS CPU_PER_EXEC,

  COLLECT_TS              AS COLLECT_TS,

  VARCHAR(STMT_TEXT, 200) AS STMT_TEXT

FROM DSN_STATEMENT_CACHE_TABLE_H

WHERE VARCHAR(STMT_TEXT, 1000) LIKE

'SELECT * FROM TMF.S1306#11_1_TB1%'

ORDER BY COLLECT_TS

STMT_HASHID2      STAT_CPU  CPU_PER_EXEC          COLLECT_TS          STMT_TEXT

----------------  --------  ------------  --------------------------  ---------------------------------------------------------------

95286BCA05F8FFB7   0.00189       0.00189  2024-09-20 15:10:08.112918  SELECT * FROM TMF.S1306#11_1_TB1 WHERE NAME = 'LE' ORDER BY DOB

95286BCA05F8FFB7   0.03804       0.03804  2024-09-20 15:15:08.34794   SELECT * FROM TMF.S1306#11_1_TB1 WHERE NAME = 'LE' ORDER BY DOB

I have a feeling that this statement 

is slower than it used to be…

Aha! Over 20 times the 

CPU per execution
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Finding access path changes

• Then look at the historic access paths

QUERYNO  QBLOCKNO  PLANNO  METHOD  CREATOR  TNAME           TABNO  ACCESSTYPE  MATCHCOLS  ACCESSCREATOR  ACCESSNAME       

-------  --------  ------  ------  -------  --------------  -----  ----------  ---------  -------------  -----------------

    211         1       1       0  TMF      S1306#11_1_TB1      1  I                   1  TMF            S1306#11_1_TB1_X1

    211         1       2       3                               0                      0                                  

    215         1       1       0  TMF      S1306#11_1_TB1      1  R                   0                                  

    215         1       2       3                               0                      0

STMT_HASHID2 identifies 

your SQL statement

We went from index 

access to tablespace scan

SELECT ...

FROM DSN_STATEMENT_CACHE_TABLE_H H

INNER JOIN PLAN_TABLE_H P

ON H.STMT_ID = P.QUERYNO

WHERE HEX(H.STMT_HASHID2) = '95286BCA05F8FFB7'

ORDER BY P.QUERYNO, P.PLANNO
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Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators
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RID list problems

• RID list: List containing row positions (RIDs) of candidate rows 
that Db2 builds when evaluating an expression using an index

• Size of a RID list is limited (~ 16.7 million RIDs)

• Size of the RID pools is limited (ZPARM MAXRBLK), overflow 
to DSNDB07 possible

• If Db2 wants to use a RID list but can’t, an alternative access 
path is calculated on the fly
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RID list problems

• Difficult to analyze

• Explain looks different from the real access plan

• Worst case: Tablespace scan even though explain looks good

• STAT_RIDLIMTB: Number of times RID list exceeded 
maximum allowed for a query

• STAT_RIDSTORB: Number of times RID list ran out of space

• Increasing the RID pool size is a possible solution (or fix the 
index setup – better filtering can help) 
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Identify problems

• Statements without parameter markers

• Highest CPU / elapsed time

• Access path changes

• RID list problems

• Other indicators
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Other indicators

• DSC contains real values (not estimates), for example:
• STAT_SYNRB → Synchronous Buffer Reads (sync. IO)

• STAT_SORTB → Number of Sorts for each SQL statement

• STAT_RSCANB → Number of tablespace scans

• STAT_INDXB → Number of index scans

• STAT_GPAGB → Number of getpages

• Monitor these over time

• Look at the top consumers, also look at values per execution
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Other indicators

• Examined rows (STAT_EROWB) vs. processed rows 
(STAT_PROWB): Ratio is helpful to find bad access patterns

• High ratio is an indicator for access patterns with index issues 

• Example: Tablespace scan, 100,000 rows, only five row 
matches the WHERE condition

• STAT_EROWB = 100,000, STAT_PROWB = 5, Ratio = 20,000 

• Good starting point for the analysis, but also look at absolute 
values



Build a lightweight monitor to identify SQL workload tuning potential

UBS Hainer 202443

Final words

• This just scratched the surface. There are many 
more statistics to look at, and also things like 
static SQL, bufferpool configuration, etc.

• It’s great to look at the current state of affairs, but 
much more value can come from trends 
(=changes over time)

• Implement changes carefully as they never affect 
a single statement only

• Measure, measure, measure
Picture: deviantart.com, Creative 

Commons Attribution 3.0 License
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Don’t feel like doing it yourself?

• Software that does the heavy lifting for you is available

• Ours is called SQLQC.
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Feel like doing it yourself?

• Download sample JCL and REXX:
https://www.ubs-hainer.com/downloads/NEDB2UG.zip

• Contains four jobs and two REXX programs

• Look at readme.txt for installation and usage instructions

https://www.ubs-hainer.com/downloads/NEDB2UG.zip
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Thank you for your attention

Questions?

kai.stroh@ubs-hainer.com

mailto:Kai.stroh@ubs-hainer.com
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