
The BLU Acceleration Technology introduced in DB2 10.5 brings with it a host of

new monitoring considerations and metrics. This session will introduce you to the

new monitoring capabilities that support BLU Acceleration and through practical

examples will show you how you can leverage these in your analytics environment.

1

Learn how to select a workload for BLU, and how to monitor columnar query

execution via time spent metrics and runtime explain

Learn how to monitor table size and compression rates

Learn how to monitor bufferpool and prefetcher performance for columnar

workloads

Learn how to track BLU memory consumption and performance via new sort

monitoring metrics

Learn how to monitor the new default workload management concurrency controls

3

5

66

BLU is aimed at analytical query processing and these are the workloads where you are going to see

benefit from this technology. Above we categorize some of the common characteristics of workloads that

are a good fit for BLU.

In the vast majority of cases you will want to make an assessment for the overall workload and decide

whether to transition it entirely to BLU or not.

If you are dealing with a database that handles a mixed operational / analytic environment OQWT offers a

workload advisor that can help you identify which tables are the best candidates for conversion to

columnar format.

Column selectivity is a useful metric in helping to assess which tables may benefit by being in columnar

format. We have added new monitoring metrics with DB2 BLU to allow you to query the column

selectivity for any tables on the database. In the example above we show how to compute the average

columns referenced per query for a specific table. You can use this metric in combination with other

factors to help decide which tables might be best suited for columnar data (or use a tool like OQWT which

uses this metric internally as part of its advisors).

Time spent metrics were a new concept introduced in DB2 9.7 to provide a

hierarchical breakdown of where time is spent in the DB2 engine. The time spent

breakdown is available at numerous reporting levels from database, to connection,

to service class, all the way down to individual queries / activities.

With DB2 BLU we have introduced new time spent metrics that allow you to

differentiate how much of the section execution time for a query was spent in the

columnar runtime. This allows you to quickly assess the efficiency of columnar

workloads and queries by determining whether the majority of their execution time

is truly spent in the columnar runtime. At the system level this will indicate to what

percentage your workload is actually leveraging the optimized column-oriented

processing. By drilling down to the query level you can identify which queries you

may want to do further analysis on to identify constructs or data objects may be

preventing them from fully leveraging column-oriented processing.

Explains represent our most granular form of query diagnostics and come in two

flavors; compile time and runtime explains. With DB2 BLU the new CTQ operator

in the plan denotes the boundary between row and column oriented processing for

DB2 BLU

When analyzing plans the position of the CTQ and the cardinality flowing out of the

CTQ are indicators for how optimal our query plan is and how much of the

processing is being done in the column-oriented runtime. In cases of suboptimal

plans look for incompatible query constructs or row oriented data objects that may

be causing portions of the plan to revert to row-oriented processing.

In the next slides we’ll look at an example.

Here we are processing a query that includes several joins, grouping and ordering.

In the output above you can see that most of this processing occurs below the CTQ

operator. The CTQ operator is the entry point into the columnar runtime. Any

processing occurring below this operator is occurring in native columnar format,

while any processing above it is being performed in conventional row format.

Above only the final ordering is performed in row format data, while most of the

query operations are performed in the columnar runtime. This means this query will

see the full benefits of BLU Acceleration.

This query is performing a non-equality join which is not supported in the columnar runtime. Since only

the table scans are executing below the CTQ in the columnar runtime, this query is effectively scanning

column oriented data, converting it to row format and then executing it in the conventional DB2 runtime.

As a consequence although this query will execute fine, it’s going to see virtually none of the benefits of

BLU Acceleration.

When monitoring table sizes in BLU its important to understand how columnar

table storage is broken down in DB2. Columnar tables are stored in three distinct

storage areas:

•The column-organized storage where the actual table user data is stored

•Conventional row oriented data storage where the meta-data (primarily dictionaries

are stored)

•Index object storage where the page map and any unique constraint indexes are

stored

In order to query the total physical table size once can use the

ADMIN_GET_TAB_INFO SQL function and examine the physical size of these

storage objects.

Above we show a simple method to determine a table’s storage footprint in columnar and in row format.

Recall columnar tables are broken down across three storage areas, while equivalent row tables are broken

down across only two.

Don’t forget to also include materialized query tables as part of the row footprint since this is part of the

storage savings when utilizing columnar tables.

Also a note on synopsis tables; to be 100% technically accurate we’d want to include the size for any

synopsis tables as part of the columnar storage footprint calculation, however we’ve neglected to do that

here because synopsis tables typically only occupy 0.1% of the storage footprint of the base table they are

associated with.

For column organized tables, table compression rates can be monitored via the

PCTPAGESSAVED table statistic in SYSCAT.TABLES. Above we show an

example of how to calculate the compression rate based on this metric. To ensure

maximum accuracy ensure you table statistics are up to date.

Note that the following compression statistics will all have the value of -1 for N/A

for columnar tables.

•AVGCOMPRESSEDROWSIZE

•AVGROWCOMPRESSIONRATIO

•AVGROWSIZE

•PCTROWCOMPRESSED

Note also that ADMIN_GET_TAB_COMPRESS_INFO does not currently support

columnar tables.

In addition to compression rates you can also examine table dictionary quality by

looking at the PCTENCODED field for each column in SYSCAT.COLUMNS.

After deploying and loading data in a BLU environment it’s always recommended

to perform some sanity validation to ensure the data has been adequately

compressed:

•The PCTENCODED filed in SYSCAT.COLUMNS will show the percentage of

values that were able to be encoded for each column.

•If you see either a poor compression rate or poor encoding rate it’s an indication

that the data wasn’t loaded properly and some troubleshooting is in order.

•Unique keys are expected to compress well due to use of offset coding so a high

PCTENCODED is expected.

•Long varchar data is expected to show a relatively lower encoding rate due to it’s

highly randomized nature.

An important factor in BLU query performance is the size of the bufferpool

memory / efficiency of bufferpool accesses. In terms of factors affecting BLU

performance the bufferpool memory is generally second only to sort / working

memory.

Because column oriented pages are stored in a separate storage area from row

oriented pages, and because the access patters are different, new bufferpool metrics

have been added to allow monitoring of I/O rates and hit ratios in the bufferpool.

These metrics are consistent with the existing bufferpool metrics and are available

in all the standard interfaces including MON_GET_DATABASE,

MON_GET_BUFFERPOOL, MON_GET_TABLESPACE, etc.

When monitoring bufferpool performance there are a couple of key things to keep

an eye on:

•Ensure the bufferpool is configured within the range prescribed by the BLU Best

Practices (25-40% of system memory depending on whether the workload is high

concurrency vs. lower concurrency).

•Check that the hit ratios look reasonable based on the size of the active dataset

relative to the bufferpool size. Note the update hit ratio calculation that was

standardized as of DB2 10.1 to work transparently in both ESE, DPF and PureScale

environments.

•Keep an eye on excessive temp I/O activity. This may be an indication of spilling

occurring due to a sort memory configuration issue and may be driving unwanted

impacts on the I/O subsystem.

Above we show how to compute the standard bufferpool hit ratios for columnar

pages, regular row oriented data pages, and overall aggregate I/O activity. As you

can see the metrics and calculations are virtually identical to previous releases with

the one addition being the columnar page storage. Note the usage of the newer hit

ratio formula based on LBP_PAGES_FOUND in order to work transparently across

all types of DB2 environments.

Another area you will want to look at when monitoring BLU performance is the

prefetcher subsystem. BLU queries tend to be complex and operate on large

volumes of data so I/O performance is critical.

We’ve introduced several new metrics for monitoring prefetching of columnar data

including columnar page reads, async (or prefetcher driven) page reads, skipped

prefetch reads, and prefetch wait time.

When looking at prefetcher performance we recommend looking first at the prefetch

ratio which indicates how many page reads were driven asynchronously by the

prefetchers vs. synchronously by the agent threads. For scan heavy workloads the

prefetch ratio should be close to 100%.

If the ratio is significantly lower than 100% check the

SKIPPED_PREFETCH_UOW_COL_P_READS and the

PREFETCH_WAIT_TIME. The SKIPPED_*_READS counter indicates how many

pages we skipped prefetching for because they were read synchronously by agent

threads. When this occurs it indicates the prefetchers are not keeping up with the

core workload. PREFETCH_WAIT_TIME is a similar secondary metric that

indicates how much wait time we incurred because an agent attempted to fetch a

page synchronously while it was being read by a prefetcher.

In order to correct prefetcher performance problems you will want to validate the

number of prefetchers configured on the database (AUTOMATIC is recommended),

and barring an obvious configuration problem you will likely want to perform

further investigation in the storage subsystem for possible performance problems.

The example above shows how to extract the columnar prefetch ratio and the

prefetch wait time. In the example above we can see that the ratio looks good at

99% with only a single page skipped due to synchronous reads. We can also see

there has been no prefetch wait time, indicating that our prefetcher subsystem is

performing efficiently.

A key thing to understand about the BLU execution environment are its working

memory considerations – having sufficient working memory is the number one

factor that’s going to determine how quickly your columnar queries will execute.

Most working memory for BLU queries comes from database sort memory where

SHEAPTHRES_SHR defines the total amount of memory on the database available

for sort operations, and the SORTHEAP parameter defines how much memory an

individual sort operator can consume. Don’t be confused by the “sort” moniker; the

naming is historical – today in DB2 this memory area would be more appropriately

named “working memory”. In BLU hash join, group-by, and general columnar

vector buffering are considered individual sort operators / consumers.

An example is shown in the plan snippet above. Three operators in the plan each

sort consumers allocate up to SORTHEAP worth of memory from the overall

SHEAPTHRES_SHR. One key thing to be aware of is that SORTHEAP must be

configured based on the expected query concurrency on the system,

When monitoring sort performance there are a few key things we want to keep an

eye on:

•Ensure your sort memory is within the range recommended by the best practices

(depending on whether you anticipate high vs. low query concurrency)

•Check that the workload has not exceeded the available SHEAPTHRES_SHR on

the database; this can lead to unpredictable performance impacts

•Check for spilling that may be caused by the SORTHEAP size itself

Possible corrective actions include:

•Adjusting / increasing SHEAPTHRES_SHR

•Adjusting the SORTHEAP ratio to allow more or less memory per operator

depending on expected query concurrency.

•Adjusting the default WLM concurrency based on the configured

SORTHEAP:SHEAPTHRES_SHR ratio.

Sort memory usage can be monitored through several key metrics:

•SORT_SHRHEAP_ALLOCATED indicates the current amount of allocated sort

memory,

•SORT_SHRHEAP_TOP indicates the high watermark for sort memory

consumption indicating aggregate sort memory demands for the workload and can

be compared with SHEAPTHRES_SHR for tuning purposes

•SORT_CONSUMER_SHRHEAP_TOP indicates the high watermark for the

largest individual sort consumer and can be compared with SORTHEAP for tuning

purposes.

These metrics are available at the database level, and as of DB2 Cancun have been

expanded to all other standard reporting levels including connection, query, service

class, workload, unit of work, etc.

In addition to sort memory metrics DB2 also exposes counts for individual sort

consumers including:

•Total counts indicating how many sort operators have executed in aggregate across

all queries for the database

•Post threshold and overflow counts which indicate respectively how many operator

executions hit memory constraints and were throttled, and how many overflowed

their available memory and were forced to spill to disk

The counts also include metrics for the number of sort consumers that are currently

active as well as high watermarks for concurrently active sort consumers.

As of DB2 Cancun the ACTIVE counts have been expanded to be reported

consistently in all the standard monitoring interfaces include query level,

connection, subclass, unit of work, etc.

The example above shows how you can monitor both the high watermark sort consumption on your

database, and the percentage of operators that are spilling during query execution. Note that we are only

including the largest sort consumers in this example as they are generally responsible for the vast majority

of sort memory consumption.

This query will allow you to determine two things; first the percentage of operations that are spilling

which will tell you how often spilling is impacting your queries and hence whether it’s a potential cause of

performance problems.

The high watermark will tell you whether the spilling is being triggered because we are exhausting the

overall sort memory on the database. If not it’s an indication that the SORTHEAP size is too constrained

for some queries to execute. Both cases are an indication you might want to consider adjusting the

SORTHEAP in conjunction with the WLM concurrency limit (we need to adjust both together because the

larger our sortheap is, the fewer queries we can accommodate at a time).

The example above shows how you can monitor sort memory usage and consumers

per query.

•SORT_SHRHEAP_TOP reports the total memory used for an execution of the

query and indicates its impact on SHEAPTHRES_SHR

•SORT_CONSUMER_HEAP_TOP indicates the largest single sort operator in the

query and can be related to the configured SORTHEAP

•ACTIVE_SORT_CONSUMERS_TOP indicates the total number of concurrent

sort operators per execution of the query

•We also include the aggregate counts for all sort operators across all executions of

the query as well as the related number of operators throttled, and that overflowed /

spilled to disk.

When taken together these metrics give a good indication of the memory footprint

of the query and whether it’s being constrained due to memory limits in either

SHEAPTHRES_SHR or SORTHEAP.

Part of the philosophy underlying the BLU Acceleration technology is that it tries to

leverage the full machine resources in order to process as quickly / efficiently as possible

and achieve its order of magnitude performance benefits. Basically BLU queries assume

they have access to the full machine hardware and will take advantage of this to run fast. As

a consequence though, columnar queries are relatively heavy on machine resource usage.

Having too many columnar queries running at the same time on a system could theoretically

lead to performance degradation, and even push the system beyond its resource limits

causing query failures. Some form of control on query execution is required to ensure

orderly execution of columnar queries.

To avoid these performance and stability problems BLU Acceleration comes with a

Default Workload Management scheme enabled. At a high level the concept is

relatively straightforward; from a user perspective we allow unlimited query

concurrency as usual. Internally though we manage query execution so that we

execute only a limited number of queries at a time. This gives us two key benefits:

•First since we know the query concurrency limit we can configure an appropriate

default SORTHEAP, and achieve predictable memory consumption which ensures

stability even in the face of significant workload spikes.

•Second, allowing only a managed number of queries to execute a time reduces

resource contention ensuring queries get the resources they need to execute quickly

and generally avoid costly spilling. This means that your throughput will be

improved and even considering queue time your queries will likely execute faster.

This slide show the default workload management for BLU in more detail:

•We split statements submitted to the system into two categories; unmanaged and
managed.

•Read-only queries with an estimated cost of > 150000 timerons are mapped to the
managed class.

•We apply a concurrency limit to the managed class which is computed at database
creation time based on the machine hardware and CPU parallelism to ensure orderly
execution of heavier weight analytic queries.

•Note that you can recompute this value if your system configuraiton changes by
rerunning AUTOCONFIGURE.

The result is that :

•Heavy queries are queued and only N are executed concurrently allowing them to
maximize their memory consumption / CPU parallelism and complete more quickly
as well as preventing system overload.

•We maintain the response time of lightweight point queries by allowing them to
bypass the control and avoid queueing behind large queries; these queries have a
much smaller resource impact on the system so we let them pass through as quickly
as possible.

•Other activities (DDL, Utilities, ETL) continue to be unmanaged. If managing
these is desirable the WLM environment can be customized further.

Above we show how to query the settings for the default workload management

configuration:

•The default estimated cost setting can be queried from the

SYSCAT.WORKCLASSATTRIBUTES catalog table

•The default concurrenty threshold setting can be queried from the

SYSCAT.THRESHOLDS catalog table

40

David Kalmuk is a Senior Architect and IBM STSM with responsibility for the

Workload Management, Monitoring, and Systems areas of the DB2 for LUW

product. David has contributed to the development of numerous technologies in

DB2 over the years including the BLU Acceleration technology in DB2 10.5,

Workload Management capabilities in DB2 10, the Performance Monitoring

capabilities in DB2 9.7, as well as much of DB2’s Processing and Communications

architecture. He is currently leading new development efforts related to the BLU

Acceleration technology. David has been a member of the DB2 team since 2000.

43

