
The BLU Acceleration Technology introduced in DB2 10.5 brings with it a host of 

new monitoring considerations and metrics. This session will introduce you to the 

new monitoring capabilities that support BLU Acceleration and through practical 

examples will show you how you can leverage these in your analytics environment. 
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Learn how to select a workload for BLU, and how to monitor columnar query 

execution via time spent metrics and runtime explain

Learn how to monitor table size and compression rates

Learn how to monitor bufferpool and prefetcher performance for columnar 

workloads

Learn how to track BLU memory consumption and performance via new sort 

monitoring metrics

Learn how to monitor the new default workload management concurrency controls
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BLU is aimed at analytical query processing and these are the workloads where you are going to see 

benefit from this technology. Above we categorize some of the common characteristics of workloads that 

are a good fit for BLU.

In the vast majority of cases you will want to make an assessment for the overall workload and decide 

whether to transition it entirely to BLU or not.



If you are dealing with a database that handles a mixed operational / analytic environment OQWT offers a 

workload advisor that can help you identify which tables are the best candidates for conversion to 

columnar format.



Column selectivity is a useful metric in helping to assess which tables may benefit by being in columnar 

format. We have added new monitoring metrics with DB2 BLU to allow you to query the column 

selectivity for any tables on the database. In the example above we show how to compute the average 

columns referenced per query for a specific table. You can use this metric in combination with other 

factors to help decide which tables might be best suited for columnar data (or use a tool like OQWT which 

uses this metric internally as part of its advisors).



Time spent metrics were a new concept introduced in DB2 9.7 to provide a 

hierarchical breakdown of where time is spent in the DB2 engine. The time spent 

breakdown is available at numerous reporting levels from database, to connection, 

to service class, all the way down to individual queries / activities. 

With DB2 BLU we have introduced new time spent metrics that allow you to 

differentiate how much of the section execution time for a query was spent in the 

columnar runtime. This allows you to quickly assess the efficiency of columnar 

workloads and queries by determining whether the majority of their execution time 

is truly spent in the columnar runtime. At the system level this will indicate to what 

percentage your workload is actually leveraging the optimized column-oriented 

processing. By drilling down to the query level you can identify which queries you 

may want to do further analysis on to identify constructs or data objects may be 

preventing them from fully leveraging column-oriented processing.



Explains represent our most granular form of query diagnostics and come in two 

flavors; compile time and runtime explains. With DB2 BLU the new CTQ operator 

in the plan denotes the boundary between row and column oriented processing for 

DB2 BLU

When analyzing plans the position of the CTQ and the cardinality flowing out of the 

CTQ are indicators for how optimal our query plan is and how much of the 

processing is being done in the column-oriented runtime. In cases of suboptimal 

plans look for incompatible query constructs or row oriented data objects that may 

be causing portions of the plan to revert to row-oriented processing.

In the next slides we’ll look at an example.



Here we are processing a query that includes several joins, grouping and ordering.  

In the output above you can see that most of this processing occurs below the CTQ 

operator. The CTQ operator is the entry point into the columnar runtime. Any 

processing occurring below this operator is occurring in native columnar format, 

while any processing above it is being performed in conventional row format. 

Above only the final ordering is performed in row format data, while most of the 

query operations are performed in the columnar runtime. This means this query will 

see the full benefits of BLU Acceleration.



This query is performing a non-equality join which is not supported in the columnar runtime. Since only 

the table scans are executing below the CTQ in the columnar runtime, this query is effectively scanning 

column oriented data, converting it to row format and then executing it in the conventional DB2 runtime. 

As a consequence although this query will execute fine, it’s going to see virtually none of the benefits of 

BLU Acceleration.





When monitoring table sizes in BLU its important to understand how columnar 

table storage is broken down in DB2. Columnar tables are stored in three distinct 

storage areas:

•The column-organized storage where the actual table user data is stored

•Conventional row oriented data storage where the meta-data (primarily dictionaries 

are stored)

•Index object storage where the page map and any unique constraint indexes are 

stored

In order to query the total physical table size once can use the 

ADMIN_GET_TAB_INFO SQL function and examine the physical size of these 

storage objects.



Above we show a simple method to determine a table’s storage footprint in columnar and in row format. 

Recall columnar tables are broken down across three storage areas, while equivalent row tables are broken 

down across only two. 

Don’t forget to also include materialized query tables as part of the row footprint since this is part of the 

storage savings when utilizing columnar tables.

Also a note on synopsis tables; to be 100% technically accurate we’d want to include the size for any 

synopsis tables as part of the columnar storage footprint calculation, however we’ve neglected to do that 

here because synopsis tables typically only occupy 0.1% of the storage footprint of the base table they are 

associated with. 



For column organized tables, table compression rates can be monitored via the 

PCTPAGESSAVED table statistic in SYSCAT.TABLES. Above we show an 

example of how to calculate the compression rate based on this metric. To ensure 

maximum accuracy ensure you table statistics are up to date.

Note that the following compression statistics will all have the value of -1 for N/A 

for columnar tables.

•AVGCOMPRESSEDROWSIZE

•AVGROWCOMPRESSIONRATIO

•AVGROWSIZE

•PCTROWCOMPRESSED

Note also that ADMIN_GET_TAB_COMPRESS_INFO does not currently support 

columnar tables.



In addition to compression rates you can also examine table dictionary quality by 

looking at the PCTENCODED field for each column in SYSCAT.COLUMNS. 

After deploying and loading data in a BLU environment it’s always recommended 

to perform some sanity validation to ensure the data has been adequately 

compressed:

•The PCTENCODED filed in SYSCAT.COLUMNS will show the percentage of 

values that were able to be encoded for each column.

•If you see either a poor compression rate or poor encoding rate it’s an indication 

that the data wasn’t loaded properly and some troubleshooting is in order.

•Unique keys are expected to compress well due to use of offset coding so a high 

PCTENCODED is expected.

•Long varchar data is expected to show a relatively lower encoding rate due to it’s 

highly randomized nature.





An important factor in BLU query performance is the size of the bufferpool 

memory / efficiency of bufferpool accesses. In terms of factors affecting BLU 

performance the bufferpool memory is generally second only to sort / working 

memory.

Because column oriented pages are stored in a separate storage area from row 

oriented pages, and because the access patters are different, new bufferpool metrics 

have been added to allow monitoring of I/O rates and hit ratios in the bufferpool. 

These metrics are consistent with the existing bufferpool metrics and are available 

in all the standard interfaces including MON_GET_DATABASE, 

MON_GET_BUFFERPOOL, MON_GET_TABLESPACE, etc.



When monitoring bufferpool performance there are a couple of key things to keep 

an eye on:

•Ensure the bufferpool is configured within the range prescribed by the BLU Best 

Practices (25-40% of system memory depending on whether the workload is high 

concurrency vs. lower concurrency). 

•Check that the hit ratios look reasonable based on the size of the active dataset 

relative to the bufferpool size. Note the update hit ratio calculation that was 

standardized as of DB2 10.1 to work transparently in both ESE, DPF and PureScale 

environments.

•Keep an eye on excessive temp I/O activity. This may be an indication of spilling 

occurring due to a sort memory configuration issue and may be driving unwanted 

impacts on the I/O subsystem.



Above we show how to compute the standard bufferpool hit ratios for columnar 

pages, regular row oriented data pages, and overall aggregate I/O activity. As you 

can see the metrics and calculations are virtually identical to previous releases with 

the one addition being the columnar page storage. Note the usage of the newer hit 

ratio formula based on LBP_PAGES_FOUND in order to work transparently across 

all types of DB2 environments.



Another area you will want to look at when monitoring BLU performance is the 

prefetcher subsystem. BLU queries tend to be complex and operate on large 

volumes of data so I/O performance is critical.

We’ve introduced several new metrics for monitoring prefetching of columnar data 

including columnar page reads, async (or prefetcher driven) page reads, skipped 

prefetch reads, and prefetch wait time.



When looking at prefetcher performance we recommend looking first at the prefetch 

ratio which indicates how many page reads were driven asynchronously by the 

prefetchers vs. synchronously by the agent threads. For scan heavy workloads the 

prefetch ratio should be close to 100%.

If the ratio is significantly lower than 100% check the 

SKIPPED_PREFETCH_UOW_COL_P_READS and the 

PREFETCH_WAIT_TIME. The SKIPPED_*_READS counter indicates how many 

pages we skipped prefetching for because they were read synchronously by agent 

threads. When this occurs it indicates the prefetchers are not keeping up with the 

core workload. PREFETCH_WAIT_TIME is a similar secondary metric that 

indicates how much wait time we incurred because an agent attempted to fetch a 

page synchronously while it was being read by a prefetcher.

In order to correct prefetcher performance problems you will want to validate the 

number of prefetchers configured on the database (AUTOMATIC is recommended), 

and barring an obvious configuration problem you will likely want to perform 

further investigation in the storage subsystem for possible performance problems.



The example above shows how to extract the columnar prefetch ratio and the 

prefetch wait time. In the example above we can see that the ratio looks good at 

99% with only a single page skipped due to synchronous reads. We can also see 

there has been no prefetch wait time, indicating that our prefetcher subsystem is 

performing efficiently.





A key thing to understand about the BLU execution environment are its working 

memory considerations – having sufficient working memory is the number one 

factor that’s going to determine how quickly your columnar queries will execute. 

Most working memory for BLU queries comes from database sort memory where 

SHEAPTHRES_SHR defines the total amount of memory on the database available 

for sort operations, and the SORTHEAP parameter defines how much memory an 

individual sort operator can consume. Don’t be confused by the “sort” moniker; the 

naming is historical – today in DB2 this memory area would be more appropriately 

named “working memory”. In BLU hash join, group-by, and general columnar 

vector buffering are considered individual sort operators / consumers. 

An example is shown in the plan snippet above. Three operators in the plan each 

sort consumers allocate up to SORTHEAP worth of memory from the overall 

SHEAPTHRES_SHR. One key thing to be aware of is that SORTHEAP must be 

configured based on the expected query concurrency on the system, 



When monitoring sort performance there are a few key things we want to keep an 

eye on:

•Ensure your sort memory is within the range recommended by the best practices 

(depending on whether you anticipate high vs. low query concurrency)

•Check that the workload has not exceeded the available SHEAPTHRES_SHR on 

the database; this can lead to unpredictable performance impacts

•Check for spilling that may be caused by the SORTHEAP size itself

Possible corrective actions include:

•Adjusting / increasing SHEAPTHRES_SHR

•Adjusting the SORTHEAP ratio to allow more or less memory per operator 

depending on expected query concurrency.

•Adjusting the default WLM concurrency based on the configured 

SORTHEAP:SHEAPTHRES_SHR ratio.



Sort memory usage can be monitored through several key metrics:

•SORT_SHRHEAP_ALLOCATED indicates the current amount of allocated sort 

memory, 

•SORT_SHRHEAP_TOP indicates the high watermark for sort memory 

consumption indicating aggregate sort memory demands for the workload and can 

be compared with SHEAPTHRES_SHR for tuning purposes

•SORT_CONSUMER_SHRHEAP_TOP indicates the high watermark for the 

largest individual sort consumer and can be compared with SORTHEAP for tuning 

purposes.

These metrics are available at the database level, and as of DB2 Cancun have been 

expanded to all other standard reporting levels including connection, query, service 

class, workload, unit of work, etc.



In addition to sort memory metrics DB2 also exposes counts for individual sort 

consumers including:

•Total counts indicating how many sort operators have executed in aggregate across 

all queries for the database

•Post threshold and overflow counts which indicate respectively how many operator 

executions hit memory constraints and were throttled, and how many overflowed 

their available memory and were forced to spill to disk



The counts also include metrics for the number of sort consumers that are currently 

active as well as high watermarks for concurrently active sort consumers.

As of DB2 Cancun the ACTIVE counts have been expanded to be reported 

consistently in all the standard monitoring interfaces include query level, 

connection, subclass, unit of work, etc.



The example above shows how you can monitor both the high watermark sort consumption on your 

database, and the percentage of operators that are spilling during query execution. Note that we are only 

including the largest sort consumers in this example as they are generally responsible for the vast majority 

of sort memory consumption.

This query will allow you to determine two things; first the percentage of operations that are spilling 

which will tell you how often spilling is impacting your queries and hence whether it’s a potential cause of 

performance problems.

The high watermark will tell you whether the spilling is being triggered because we are exhausting the 

overall sort memory on the database. If not it’s an indication that the SORTHEAP size is too constrained 

for some queries to execute. Both cases are an indication you might want to consider adjusting the 

SORTHEAP in conjunction with the WLM concurrency limit (we need to adjust both together because the 

larger our sortheap is, the fewer queries we can accommodate at a time).



The example above shows how you can monitor sort memory usage and consumers 

per query. 

•SORT_SHRHEAP_TOP reports the total memory used for an execution of the 

query and indicates its impact on SHEAPTHRES_SHR

•SORT_CONSUMER_HEAP_TOP indicates the largest single sort operator in the 

query and can be related to the configured SORTHEAP

•ACTIVE_SORT_CONSUMERS_TOP indicates the total number of concurrent 

sort operators per execution of the query

•We also include the aggregate counts for all sort operators across all executions of 

the query as well as the related number of operators throttled, and that overflowed / 

spilled to disk.

When taken together these metrics give a good indication of the memory footprint 

of the query and whether it’s being constrained due to memory limits in either 

SHEAPTHRES_SHR or SORTHEAP.





Part of the philosophy underlying the BLU Acceleration technology is that it tries to 

leverage the full machine resources in order to process as quickly / efficiently as possible 

and achieve its order of magnitude performance benefits. Basically BLU queries assume 

they have access to the full machine hardware and will take advantage of this to run fast. As 

a consequence though, columnar queries are relatively heavy on machine resource usage. 

Having too many columnar queries running at the same time on a system could theoretically 

lead to performance degradation, and even push the system beyond its resource limits 

causing query failures. Some form of control on query execution is required to ensure 

orderly execution of columnar queries.



To avoid these performance and stability problems BLU Acceleration comes with a 

Default Workload Management scheme enabled. At a high level the concept is 

relatively straightforward; from a user perspective we allow unlimited query 

concurrency as usual. Internally though we manage query execution so that we 

execute only a limited number of queries at a time. This gives us two key benefits:

•First since we know the query concurrency limit we can configure an appropriate 

default SORTHEAP, and achieve predictable memory consumption which ensures 

stability even in the face of significant workload spikes.

•Second, allowing only a managed number of queries to execute a time reduces 

resource contention ensuring queries get the resources they need to execute quickly 

and generally avoid costly spilling. This means that your throughput will be 

improved and even considering queue time your queries will likely execute faster.



This slide show the default workload management for BLU in more detail:

•We split statements submitted to the system into two categories; unmanaged and 
managed.

•Read-only queries with an estimated cost of > 150000 timerons are mapped to the 
managed class.

•We apply a concurrency limit to the managed class which is computed at database 
creation time based on the machine hardware and CPU parallelism to ensure orderly 
execution of heavier weight analytic queries.

•Note that you can recompute this value if your system configuraiton changes by 
rerunning AUTOCONFIGURE.

The result is that :

•Heavy queries are queued and only N are executed concurrently allowing them to 
maximize their memory consumption / CPU parallelism and complete more quickly 
as well as preventing system overload.

•We maintain the response time of lightweight point queries by allowing them to 
bypass the control and avoid queueing behind large queries; these queries have a 
much smaller resource impact on the system so we let them pass through as quickly 
as possible.

•Other activities (DDL, Utilities, ETL) continue to be unmanaged. If managing 
these is desirable the WLM environment can be customized further.



Above we show how to query the settings for the default workload management 

configuration:

•The default estimated cost setting can be queried from the 

SYSCAT.WORKCLASSATTRIBUTES catalog table

•The default concurrenty threshold setting can be queried from the 

SYSCAT.THRESHOLDS catalog table
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