’; IDUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

= Leading the DB2 User
Community since 1988

Monitoring BLU Acceleration In Depth

David Kalmuk
IBM
Session Code: D19

Friday May 8%, 8:00— 9:00
Platform: DB2 for LUW

The BLU Acceleration Technology introduced in DB2 10.5 brings with it a host of
new monitoring considerations and metrics. This session will introduce you to the
new monitoring capabilities that support BLU Acceleration and through practical
examples will show you how you can leverage these in your analytics environment.

’E IDUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

= Leading the DB2 User
Community since 1988

Objectives

* Learn how to select a workload for BLU, and how to monitor
columnar query execution via time spent metrics and runtime
explain

* Learn how to monitor table size and compression rates

* Learn how to monitor bufferpool and prefetcher performance
for columnar workloads

* Learn how to track BLU memory consumptionand
performance via new sort monitoring metrics

* Learn how to monitor the new default workload management
concurrency controls

Learn how to select a workload for BLU, and how to monitor columnar query
execution via time spent metrics and runtime explain

Learn how to monitor table size and compression rates

Learn how to monitor bufferpool and prefetcher performance for columnar
workloads

Learn how to track BLU memory consumption and performance via new sort
monitoring metrics

Learn how to monitor the new default workload management concurrency controls

-~

IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

Leading the DB2 User Philadelphia, Pennsylvania | May 2015
Community since 1988

Agenda

A quick review of the BLU Acceleration technology
Selecting a workload and monitoring columnar query execution
Monitoring columnar table size and compression rates

Monitoring bufferpools and 1/O performance for columnar
workloads

Monitoring BLU sort memory consumptionand performance

Monitoring the default workload management for analytic
workloads

. 1DUG IDUG DB2 North America Tech Conference
Leading the DB User Philadelphia, Pennsylvania | May 2015
Communty since 1988

A Quick Review of the BLU Acceleration
Technology

’ #IDUGDB2

’i IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

Leading the DB2 User Philadelphia, Pennsylvania | May 2015
Community since 1988

BLU Acceleration™

Introducing BLU Acceleration S—

IBM Research & Development Lab Innovations

+ Dynamic In-Memory « Actionable Compression
In-memow columnar processing with Patented compression technique that preserves order
dynamic movement of data from storage data sothat the data can be used without decompressing

Ery;déed

+ Parallel Vector Processing + Data Skipping

Multi-core and SIMD parallelism Skips unnecessary processing of irrelevantdata
(Single Instruction Multiple Data) Results

’; IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

Leading the DB2 User
Community since 1988

DB2 with BLU Acceleration

1.Next generation database

@ Fast (query performance)
@ Small (storage savings)
@ Simple (load-and-go)

Same “old”
sSQL, “newly”
implemented!

2.Seamlessly integrated

Built seamlessly into DB2

* Rich, robust capabilities for security, availability, cloud computing.
* Very mature query compiler, storage and caching infrastructure.
Consistent SQL, language interfaces, administration

Dramatic simplification

3.Hardware optimized
Memory optimized
CPU-optimized
1/O optimized

. 1DUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2
Leading the DB User Philadelphia, Pennsylvania | May 2015
Communty since 1968

Selecting a Workload and
Monitoring Columnar Query Execution

';6 IDUG IDUG DB2 North America Tech Conference W #IDUG

@ Leading the DB2 User
Community since 1988

Will your workload benefit from BLU?

Probably: Probably not:
* Analytical workloads, * OLTP
data marts

* Pointaccessto 1 or few rows
» Grouping, aggregation, range

| © * Insert, Update, Delete of few
scans, joins

rows per transaction
* Queriestouch only a subset of .

Queries touch many or all
the columns in a table

columns in a table

+ Star or Snowflake Schema « Heavy use of XML, Temporal,

* SAP Business Warehouse LOBs

BLU is aimed at analytical query processing and these are the workloads where you are going to see
benefit from this technology. Above we categorize some of the common characteristics of workloads that
are a good fit for BLU.

In the vast majority of cases you will want to make an assessment for the overall workload and decide
whether to transition it entirely to BLU or not.

Leading the DB2 User Philadelphia, Pennsylvania | May 2015
Community since 1988

’i IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

IBM Optim Query Tuner
Advisor identifies candidate tables
for conversion to columnar format.

[! Review Workload Advisor Recommendations Analyzes SQL workload and
estimates execution cost on row-
This page shows the recommendations from the advisors that you ran. and column-organized tables.

Database connection: & TPCDSDANV10.2hotel67 (DB2 for Linux, UNIX, and Windows V10.5.0)

» Status/Description

Statements summary Table organization &3\ Candidate Table Organization

Estimated performance improvement: 834 %
Number of tables referenced in the workload: 11 Number of tables recommended for conversion: 11
lShowDDLScript‘ [Teﬁ" didate Table Organi 12| @ | Filter by | Tables to be converted %)
| Table Creator Current Organization Recommended Organization Conversion Warning
| HOUSEHOLD_DEMOG... TPCDS ROW COLUMN Indexes will be remove
DATE_DIM TPCDS ROW COLUMN Indexes will be remove
WEB_SALES TPCDS ROW COLUMN Indexes will be remove
STORE TPCDS ROW COLUMN Indexes will be remove
CYNDEL CALCC ThONC oM AL ladaos ol ha cacnacia

If you are dealing with a database that handles a mixed operational / analytic environment OQWT offers a
workload advisor that can help you identify which tables are the best candidates for conversion to
columnar format.

'56 IDUG IDUG DB2 North America Tech Conference

3 #IDUG
W e,
Looking at Table Column Selectivity

* MON_GET_TABLE function includes new metrics to help
assess columns accessed per query

SELECT SECTION_EXEC WITH_COL_REFERENCES AS NUM QUERIES,
(NUM_COLUMNS_REFERENCED /
NULLIF (SECTION EXEC_WITH_COL_REFERENCES, 0))
AS AVG_COLS REF_PER_QUERY

FROM TABLE (MON_GET_TABLE (‘MYSCHEMA’ , 'MYTABLE’ ,-1))

il °o

NUM_QUERIES AVG_COLS_REF_PER_QUERY

If few columns are
accessed relative to full
set in table this may be a
good candidate to convert
to a columnar table

655 2

Column selectivity is a useful metric in helping to assess which tables may benefit by being in columnar
format. We have added new monitoring metrics with DB2 BLU to allow you to query the column
selectivity for any tables on the database. In the example above we show how to compute the average
columns referenced per query for a specific table. You can use this metric in combination with other

factors to help decide which tables might be best suited for columnar data (or use a tool like OQWT which
uses this metric internally as part of its advisors).

’;é IDUG IDUG DB2 North America Tech Conference W #IDU

@ ‘C:acma:rnziz L,s::
Time Spent Metrics

* Provide a hierarchical breakdown of where time is spentin the DB2 engine
e Available at multiple reporting levels
Eg. MON_GET_DATABASE, MON_GET_PKG_CACHE_STMT
* New time spent elements for measuring amount of columnar processing
TOTAL_COL_TIME/ TOTAL_COL_PROC_TIME

SELECT TOTAL_ SECTION_TIME, TOTAL_COL_TIME,
DEC ((FLOAT (TOTAL_COL_TIME) /
FLOAT (NULLIF (TOTAL_SECTION_TIME, 0)))*100,5,2)
AS PCT_COL_TIME
FROM TABLE (MON_GET_PKG_CACHE_STMT (NULL, NULL, NULL,-1)) AS T

WHERE STMT TEXT = 'SELECT * FROM TEST.COLTAB A, TEST.ROWTAB B WHERE A.ONE = B.ONE'
TOTAL_SECTION_TIME TOTAL_COL_TIME PCT_COL_TIME
5 4 80.00

Time spent metrics were a new concept introduced in DB2 9.7 to provide a
hierarchical breakdown of where time is spent in the DB2 engine. The time spent
breakdown is available at numerous reporting levels from database, to connection,
to service class, all the way down to individual queries / activities.

With DB2 BLU we have introduced new time spent metrics that allow you to
differentiate how much of the section execution time for a query was spent in the
columnar runtime. This allows you to quickly assess the efficiency of columnar
workloads and queries by determining whether the majority of their execution time
is truly spent in the columnar runtime. At the system level this will indicate to what
percentage your workload is actually leveraging the optimized column-oriented
processing. By drilling down to the query level you can identify which queries you
may want to do further analysis on to identify constructs or data objects may be
preventing them from fully leveraging column-oriented processing.

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG
Vﬁ [L:car:'»grcCSZ User
ommunity since 1988

Explain / Runtime Explain

* Explains represent our most granular form of diagnostics for
qguery performance analysis

* New CTQ operator denotes boundary between row and
column oriented processing for DB2 BLU

* Key points for analyzing column-oriented processing with
explains
Position of CTQ in the planindicates how much we are able to leverage the
columnar runtime
Also look at the cardinalities (including section actuals) for number of rows
flowing out of the CTQ into row-oriented processing

Look for incompatible query constructs, or row oriented data objects that may
cause portions of the plan to revert to row-oriented processing

Explains represent our most granular form of query diagnostics and come in two
flavors; compile time and runtime explains. With DB2 BLU the new CTQ operator
in the plan denotes the boundary between row and column oriented processing for
DB2 BLU

When analyzing plans the position of the CTQ and the cardinality flowing out of the
CTQ are indicators for how optimal our query plan is and how much of the
processing is being done in the column-oriented runtime. In cases of suboptimal
plans look for incompatible query constructs or row oriented data objects that may
be causing portions of the plan to revert to row-oriented processing.

In the next slides we’ll look at an example.

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

@é Leading the DB2 User
Community since 1988

Example of an Optimal Execution Plan

SELECT c.trading n <snip> Ope‘rators above CTQuse
[Rame SORT DB2’'s regular row-based

FROM f, c, dt (4) processing

WHERE T

f.client dim key = c.client dim key CTQ

AND f.trade dt = dt.dt_dim key
AND f.is cancelled = 0
GROUP BY c.trading name, dt.year

Operators below CTQ
i are optimized for
ORDER BY c.trading name column-organized tables
Alltable scans, hash
Joins, and grouping are
performed in columnar
query runtime (good)

CO-TABLE: dt

Here we are processing a query that includes several joins, grouping and ordering.
In the output above you can see that most of this processing occurs below the CTQ
operator. The CTQ operator is the entry point into the columnar runtime. Any
processing occurring below this operator is occurring in native columnar format,
while any processing above it is being performed in conventional row format.
Above only the final ordering is performed in row format data, while most of the
query operations are performed in the columnar runtime. This means this query will
see the full benefits of BLU Acceleration.

'?Tﬁ IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

W e
Exampie of a Suboptimai Execution Pian

<snip>
Operators ?Wﬂg) SELECT c.trading name
above CTQ | FROM f,c
use DB2's
requar | —> T WHERE f.client dim key >
oW hesed c.client dim key
processing —. —_

GROUP BY c.trading name

Two table scansdeliver potentially
many rowsintothe CTQs.

Subsequentjoin is executed with
regularrow-based processing. Does
not benefit from column-optimized
Jjointechniques.

TBSCAN

(12)
|

CO-TABLE: F

This query is performing a non-equality join which is not supported in the columnar runtime. Since only
the table scans are executing below the CTQ in the columnar runtime, this query is effectively scanning
column oriented data, converting it to row format and then executing it in the conventional DB2 runtime.
As a consequence although this query will execute fine, it’s going to see virtually none of the benefits of
BLU Acceleration.

. 1DUG IDUG DB2 North America Tech Conference
Leading the DB User Philadelphia, Pennsylvania | May 2015
Communty since 1988

Monitoring Columnar Table Size and
Compression Rates

’ #IDUGDB2

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

‘é Leading the DB2 User
Community since 1988

Monitoring Table Size

Columnar Table Storage
Data Object

Page Map /
Unique Indexes

N Column-Organized w T
o N
7, Storage Object % Meta Data al
ﬁ. User Data n_: (Dictionaries) o,
'—

: 2 2
2 j 2
8I Empty Pages g Index Object 8
5 <
: g g
2 a

—r—

= ADMIN_GET_TAB_INFO table function reports

COL_OBJECT_P_SIZE: Physical size of column-organized data object containing
user data

DATA_OBJECT_P_SIZE: Physical size of data object containing meta data

INDEX_OBIJECT_P_SIZE: Physical size of index object containing page map and
primary / unique key constraintindexes

When monitoring table sizes in BLU its important to understand how columnar
table storage is broken down in DB2. Columnar tables are stored in three distinct
storage areas:

*The column-organized storage where the actual table user data is stored

*Conventional row oriented data storage where the meta-data (primarily dictionaries
are stored)

*Index object storage where the page map and any unique constraint indexes are
stored

In order to query the total physical table size once can use the
ADMIN_GET_TAB_INFO SQL function and examine the physical size of these
storage objects.

';é IDUG IDUG DB2 North America Tech Conference W #1DUG

@' Ecac:g:c]iz Lm:;
Comparing Space Usage

* Usethe ADMIN_GET_TAB_INFO function to compute the
physical storage requirements of tables in columnar vs. row

format

Columnar Table Storage Footprint (User Data +
- o - = Me+a Data +
select tabschema, tabname, e
(col_object_p size + T Page Map & Unique
data_object_p_size + - exes
index_object_p_size) as space_used kb4~
from table(admin get_tab_info (‘MYSCHEMA’, ' MYCOLTABLE' ,-1))

Row Table Storage Footprint
(User & Meta Data +

select tabschema, tabname, _
(data_object_p_size + s ST Indexes)
index_object_p_size) as space_used kb 47~

from table(admin get_tab_info (‘MYSCHEMA’, ' MYROWTABLE' ,-1))

* Don’t forget toinclude MQTs as part of the storage cost of tables
in row format

Above we show a simple method to determine a table’s storage footprint in columnar and in row format.
Recall columnar tables are broken down across three storage areas, while equivalent row tables are broken

down across only two.

Don’t forget to also include materialized query tables as part of the row footprint since this is part of the
storage savings when utilizing columnar tables.

Also a note on synopsis tables; to be 100% technically accurate we’d want to include the size for any
synopsis tables as part of the columnar storage footprint calculation, however we’ve neglected to do that
here because synopsis tables typically only occupy 0.1% of the storage footprint of the base table they are

associated with.

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

Vﬁ Leading the DB2 User
Community since 1988
Monitoring Table Compression

e Check compression rate via PCTPAGESSAVED in SYSCAT . TABLES

Compression Ratio = Uncompressed Size / Compressed Size

=1/(1-PCTPAGESSAVED/ 100)

TABSCHEMA="TEST” | TABNAME="TABY’ PCTPAGESSAVED = 90

Compression Ratio= 1/ (1 —90/100) = 10x compression

e Other compression statistics do not apply to columnar tables

AVGCOMPRESSEDROWSIZE, AVGROWCOMPRESSIONRATIO,
PCTROWCOMPRESSED, AVGROWSIZE

* ADMIN GET TAB COMPRESS INFO does not support columnar tables

For column organized tables, table compression rates can be monitored via the
PCTPAGESSAVED table statistic in SYSCAT.TABLES. Above we show an
example of how to calculate the compression rate based on this metric. To ensure
maximum accuracy ensure you table statistics are up to date.

Note that the following compression statistics will all have the value of -1 for N/A
for columnar tables.

*AVGCOMPRESSEDROWSIZE
*AVGROWCOMPRESSIONRATIO
*AVGROWSIZE
*PCTROWCOMPRESSED

Note also that ADMIN_GET_TAB_COMPRESS_INFO does not currently support
columnar tables.

22 1DUG IDUG DB2 North America Tech Conference w) #IDUGDB2
@? ‘C:acmg:rbcaz L,zei
Monitoring Table Dictionary Quality

e Check encoding rate via SYSCAT . COLUMNS

v A

C1 | PCTENCODED =90 C1 | PCTENCODED =0
C2 | PCTENCODED =75 C2 | PCTENCODED =10
C3 [PCTENCODED = 100 C3 | PCTENCODED =0

e Poor compression/encoding rate indicates data wasn’t
loaded properly

e If you see evidence of poor compression you will need to troubleshoot and
reload the data

* Remember poor compression also affects query performance

In addition to compression rates you can also examine table dictionary quality by
looking at the PCTENCODED field for each column in SYSCAT.COLUMNS.

After deploying and loading data in a BLU environment it’s always recommended
to perform some sanity validation to ensure the data has been adequately
compressed:

*The PCTENCODED filed in SYSCAT.COLUMNS will show the percentage of
values that were able to be encoded for each column.

*[f you see either a poor compression rate or poor encoding rate it’s an indication
that the data wasn’t loaded properly and some troubleshooting is in order.

*Unique keys are expected to compress well due to use of offset coding so a high
PCTENCODED is expected.

*Long varchar data is expected to show a relatively lower encoding rate due to it’s
highly randomized nature.

. 1DUG IDUG DB2 North America Tech Conference W) #IDUGDB2
Leading the DB User Philadelphia, Pennsylvania | May 2015
Community since 1988

Monitoring Bufferpool and 1/O Performance

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

Vﬁ Leading the DB2 User
Community since 1988

Monitoring Bufferpool Performance

e Efficient bufferpool access is an important element to achieving maximum
performance with BLU

* Column-oriented pages are stored in a separate storage area from row-
oriented pages necessitating new monitoring metrics

* New bufferpool metrics allow for monitoring of 1/O rates and hit ratios for
bufferpool tuning activities
POOL_COL_L_READS
POOL_COL_P_READS
POOL_COL_LBP_PAGES_FOUND
POOL_COL_WRITES
Also ASYNC variants of the above

e Metrics are available in all standard monitoring interfaces including
Eg. MON_GET_DATABASE, MON_GET_BUFFERPOOL, MON_GET_TABLESPACE

An important factor in BLU query performance is the size of the bufferpool
memory / efficiency of bufferpool accesses. In terms of factors affecting BLU
performance the bufferpool memory is generally second only to sort / working
memory.

Because column oriented pages are stored in a separate storage area from row
oriented pages, and because the access patters are different, new bufferpool metrics
have been added to allow monitoring of I/O rates and hit ratios in the bufferpool.
These metrics are consistent with the existing bufferpool metrics and are available
in all the standard interfaces including MON_GET_DATABASE,
MON_GET_BUFFERPOOL, MON_GET_TABLESPACE, etc.

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

@é Leading the DB2 User
Community since 1988

Bufferpool Performance: Things to look for

* Ensure your bufferpool size is within the ranges recommended
by the BLU best practices

25-40% of system memory

* Check that bufferpool hit ratios look reasonable based on your
configuration and data size (note the latest formula)

Hit Ratio = (LBP_PAGES_FOUND - ASYNC LBP_PAGES FOUND) / |<(P)-
(L_READS + TEMP I READS)

» Keep an eye on excessive temp |/O activity which could be an
indication of spilling due to sort memory configuration issues

When monitoring bufferpool performance there are a couple of key things to keep
an eye on:

*Ensure the bufferpool is configured within the range prescribed by the BLU Best
Practices (25-40% of system memory depending on whether the workload is high
concurrency vs. lower concurrency).

*Check that the hit ratios look reasonable based on the size of the active dataset
relative to the bufferpool size. Note the update hit ratio calculation that was
standardized as of DB2 10.1 to work transparently in both ESE, DPF and PureScale
environments.

*Keep an eye on excessive temp I/O activity. This may be an indication of spilling
occurring due to a sort memory configuration issue and may be driving unwanted
impacts on the I/O subsystem.

’ IDUG IDUG DB2 North America Tech Conference) #IDUGDB2
@ Leading the DB2 User '
Community since 1988

Computing Bufferpool Hit Ratios

@)
o
SELECT DEC ((FLOAT (POOL DATA LBP PAGES FOUND + POOL COL LBP PAGES FOUND —
POOL ASYNC DATA LBP PAGES FOUND - POOL ASYNC COL LBP PAGES FOUND) /
FLOAT (NULLIF (POOL_DATA L READS + POOL TEMP DATA L READS +
POOL COL L READS + POOL TEMP COL L READS,0))) * 100, 5, 2)
AS TOTAL_PAGE_HIT_RATIO,
DEC ((FLOAT (POOL DATA LBP PAGES FOUND - POOL ASYNC DATA LBP PAGES FOUND) /
FLOAT (NULLIF (POOL DATA L READS + POOL TEMP DATA L READS,0))) * 100, 5, 2)
AS ROW_PAGE_HIT_RATIO,
DEC ((FLOAT (POOL_COL_LBP_PAGES FOUND - POOL ASYNC COL LBP PAGES FOUND) /
FLOAT (NULLIF (POOL COL L READS + POOL TEMP COL L READS,0))) * 100, 5, 2)
AS COL_PAGE_HIT RATIO
FROM TABLE (MON_GET_DATABASE (-2))

11

TOTAL PAGE_HIT RATIO ROW_PAGE_HIT RATIO COL_PAGE_HIT RATIO

Above we show how to compute the standard bufferpool hit ratios for columnar
pages, regular row oriented data pages, and overall aggregate I/O activity. As you
can see the metrics and calculations are virtually identical to previous releases with
the one addition being the columnar page storage. Note the usage of the newer hit
ratio formula based on LBP_PAGES_FOUND in order to work transparently across
all types of DB2 environments.

’; IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

= Leading the DB2 User
Community since 1988

Monitoring Prefetcher Performance

* In order to achieve maximum I/O performance it’s also
important to ensure the prefetcher subsystem is operating
efficiently

* We have several metrics for monitoring prefetching of
columnar data
POOL_COL_P_READS
POOL_ASYNC_COL_P_READS
SKIPPED_PREFETCH_UOW_COL_P_READS
PREFETCH_WAIT_TIME

Another area you will want to look at when monitoring BLU performance is the
prefetcher subsystem. BLU queries tend to be complex and operate on large
volumes of data so I/O performance is critical.

We’ve introduced several new metrics for monitoring prefetching of columnar data
including columnar page reads, async (or prefetcher driven) page reads, skipped
prefetch reads, and prefetch wait time.

’;é IDUG IDUG DB2 North America Tech Conference W Hi

a@ﬁ ‘Ec'a::‘gyr'elarz L,:::
Prefetcher Performance: Things to look for

e The prefetch ratio should be close to 100% for scan heavy workloads

Prefetch Ratio = 100 * (POOL_ASYNC_COL P READS /
POOL_COL_P READS)

* Check SKIPPED PREFETCH UOW COL P _READS

This value indicates how many pages were skipped because the prefetchers did
not load the page fast enough and it was read synchronously

e Check PREFETCH WAIT TIME

This time indicates time waited when an agent collided with a prefetcher in the
process of reading a page

* Possible corrective steps
Check the number of prefetchers configured (AUTO is recommended)
Check for problems with storage

When looking at prefetcher performance we recommend looking first at the prefetch
ratio which indicates how many page reads were driven asynchronously by the
prefetchers vs. synchronously by the agent threads. For scan heavy workloads the
prefetch ratio should be close to 100%.

If the ratio is significantly lower than 100% check the
SKIPPED_PREFETCH_UOW_COL_P_READS and the
PREFETCH_WAIT_TIME. The SKIPPED_*_READS counter indicates how many
pages we skipped prefetching for because they were read synchronously by agent
threads. When this occurs it indicates the prefetchers are not keeping up with the
core workload. PREFETCH_WAIT_TIME is a similar secondary metric that
indicates how much wait time we incurred because an agent attempted to fetch a
page synchronously while it was being read by a prefetcher.

In order to correct prefetcher performance problems you will want to validate the
number of prefetchers configured on the database (AUTOMATIC is recommended),
and barring an obvious configuration problem you will likely want to perform
further investigation in the storage subsystem for possible performance problems.

’ IDUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

@ Leading the DB2 User
Community since 1988

Examining Prefetch Monitoring Information

Extract
columnar
prefetch

ratios for the
SELECT POOL_ASYNC COL_READS AS ASYNC COL READS, O e
POOL_COL_P_READS AS COL_P_READS,
DEC ((FLOAT (POOL_ASYNC_COL_READS) / °
FLOAT (NULLIF (POOL_COL_P_READS,0))) * 100, 5, 2)
AS COL_PREFETCH_ RATIO,
SKIPPED PREFETCH UOW_COL P_READS AS SKIPPED COL_P_READS,
PREFETCH_WAIT TIME
FROM TABLE (MON_GET_DATABASE (-1))
Prefetch ratio of 99% indicates we Single Sk'PP?d ",“'d “"d,m .
are prefetching efficiently prefetch wcv]' time confirms this

ASYNC_COL_READS COL_P_READS COLﬁPREFETé}{kRATIO SKIPPED_COL P_READS PREF{ETCH7WAIT7TIME

3242134 3274882 99.00 } it 0y

The example above shows how to extract the columnar prefetch ratio and the

prefetch wait time. In the example above we can see that the ratio looks good at
99% with only a single page skipped due to synchronous reads. We can also see
there has been no prefetch wait time, indicating that our prefetcher subsystem is

performing efficiently.

. 1DUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2
Leading the DB User Philadelphia, Pennsylvania | May 2015
Communty since 1968

Monitoring BLU Sort Memory
Consumption and Performance

’E IDUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

= Leading the DB2 User
Community since 1988

BLU Memory Model

* Most working memory for BLU queries comes from database
sort memory
SHEAPTHRES SHR (total available memory)

SORTHEAP (memory per operator: group-by, join, vector buffering, configured
based on expected concurrency)

() 5
bt e D SORTHEAP
B
GRPBY :
(8 i
-

AHSJOIN
(8

SHEAPTHRES_SHR

Y —
! TBSCAN TBSCAN
(10) (11)
| |
| CO-TABLE: f CO-TABLE: ¢

A key thing to understand about the BLU execution environment are its working
memory considerations — having sufficient working memory is the number one
factor that’s going to determine how quickly your columnar queries will execute.

Most working memory for BLU queries comes from database sort memory where
SHEAPTHRES_SHR defines the total amount of memory on the database available
for sort operations, and the SORTHEAP parameter defines how much memory an
individual sort operator can consume. Don’t be confused by the “sort” moniker; the
naming is historical — today in DB2 this memory area would be more appropriately
named “working memory”. In BLU hash join, group-by, and general columnar
vector buffering are considered individual sort operators / consumers.

An example is shown in the plan snippet above. Three operators in the plan each
sort consumers allocate up to SORTHEAP worth of memory from the overall
SHEAPTHRES_SHR. One key thing to be aware of is that SORTHEAP must be
configured based on the expected query concurrency on the system,

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

Vﬁ Leading the DB2 User
Community since 1988
Sort Memory Performance: Things to look for

* Ensure your sort configuration is within the range recommended by the
BLU best practices
SHEAPTHRES_SHR at 40-50% of system memory
SORTHEAP between 1:5 and 1:20 of SHEAPTHRES_SHR

e Check that the workload has not exceeded the available SHEAPTHRES_SHR
on the database

When SHEAPTHRES_SHR is exhausted it can lead to unpredictable spillingor
even query failures in extreme circumstatnces

e Check for spilling caused by insufficient SORTHEAP
If SORTHEAP is constrained specific large ‘sort’ operators may be forced to spill

* Possible corrective steps
Examine / tune the configured SHEAPTHRES_SHR
Adjust the SORTHEAP ratio
Adjusting the default workload management in conjunction with this

When monitoring sort performance there are a few key things we want to keep an
eye on:

*Ensure your sort memory is within the range recommended by the best practices
(depending on whether you anticipate high vs. low query concurrency)

*Check that the workload has not exceeded the available SHEAPTHRES SHR on
the database; this can lead to unpredictable performance impacts

*Check for spilling that may be caused by the SORTHEAP size itself

Possible corrective actions include:
*Adjusting / increasing SHEAPTHRES_SHR

*Adjusting the SORTHEAP ratio to allow more or less memory per operator
depending on expected query concurrency.

*Adjusting the default WLM concurrency based on the configured
SORTHEAP:SHEAPTHRES_SHR ratio.

2.1 DUG IDUG DB2 North America Tech Conference ¥ #IDUG

@é Leading the DB2 User
Community since 1988

Monitoring Sort Memory Usage

* Sort memory can be monitoring through the following metrics
SORT_SHRHEAP_ALLOCATED (current)
SORT_SHRHEAP_TOP (high watermark)
SORT_CONSUMER_SHRHEAP_TOP (per consumer hwm) (P82 10.5 Cancun+)

* Accessible at multiple levels of reporting
MON_GET_DATABASE (Database level)
MON_GET_PKG_CACHE_STMT (Query level) (0B210.5Cancuns)

MON_GET_SERVICE_SUBCLASS_STATS (Subclass level) (PB210.5 Cancun+)
Others (DB2 10.5 Cancun+)

* Example: Obtain current and
maximum sort usage for
SELECT SORT_SHRHEAP ALLOCATED,
SORT_SHRHEAP TOP
FROM TABLE (MON_GET_DATABASE (-1))

Sort memory usage can be monitored through several key metrics:

*SORT_SHRHEAP_ ALLOCATED indicates the current amount of allocated sort
memory,

*SORT_SHRHEAP_TOP indicates the high watermark for sort memory
consumption indicating aggregate sort memory demands for the workload and can
be compared with SHEAPTHRES_SHR for tuning purposes

*SORT_CONSUMER_SHRHEAP_TOP indicates the high watermark for the
largest individual sort consumer and can be compared with SORTHEAP for tuning
purposes.

These metrics are available at the database level, and as of DB2 Cancun have been
expanded to all other standard reporting levels including connection, query, service
class, workload, unit of work, etc.

Leading the DB2 User
Community since 1988

’; IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

Monitoring Sort Consumers

* Total individual sort consumer counts including
TOTAL_SORT_CONSUMERS (overall total)
TOTAL_HASH_GRPBYS
TOTAL_HASH_JOINS
TOTAL_OLAP_FUNCS
TOTAL_SORTS
TOTAL_COL_VECTORS_CONSUMERS(082 105 Cancun)

* Memory throttling and overflow / spill counts
POST_THRESHOLD_HASH_GRPBYS / HASH_GRPBY_OVERFLOWS
POST_THRESHOLD_HASH_JOINS / HASH_JOIN_OVERFLOWS
POST_THRESHOLD_OLAP_FUNCS / OLAP_FUNC_OVERFLOWS
POST_THRESHOLD_SORTS / SORT_OVERFLOWS
POST_THRESHOLD_COL_VECTOR_CONSUMERS

In addition to sort memory metrics DB2 also exposes counts for individual sort
consumers including:

*Total counts indicating how many sort operators have executed in aggregate across
all queries for the database

*Post threshold and overflow counts which indicate respectively how many operator
executions hit memory constraints and were throttled, and how many overflowed
their available memory and were forced to spill to disk

’ IDUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

@ Leading the DB2 User
Community since 1988

Monitoring Sort Consumers

* Active sort consumer counts and high watermarks
ACTIVE_SORT_CONSUMERS / ACTIVE_SORT_CONSUMERS_TOP(PB210.5 Cancun+)
ACTIVE_HASH_GRPBYS / ACTIVE_HASH_GRPBYS_TOP
ACTIVE_HASH_JOINS / ACTIVE_HASH_JOINS_TOP
ACTIVE_OLAP_FUNCS / ACTIVE_OLAP_FUNCS_TOP
ACTIVE_SORTS / ACTIVE_SORTS_TOP

ACTIVE_COL_VECTORS_CONSUMERS/
ACTIVE_COL_VECTOR_CONSUMERS_TOP (PB2 10.5 Cancun+)

* Also accessible at multiple levels of reporting
MON_GET_DATABASE (Database level)

MON_GET_PKG_CACHE_STMT (Query level)
MON_GET_SERVICE_SUBCLASS_STATS (Subclass level)

Others

The counts also include metrics for the number of sort consumers that are currently
active as well as high watermarks for concurrently active sort consumers.

As of DB2 Cancun the ACTIVE counts have been expanded to be reported
consistently in all the standard monitoring interfaces include query level,
connection, subclass, unit of work, etc.

IDUG DB2 North America Tech Conference

Monitoring for Spiiiing

with ops as
(select
(total_sorts + total hash joins + total_hash grpbys)
as sort_ops,
(sort_overflows + hash join_overflows + hash grpby overflows)
as overflows,
sort_shrheap top as sort_heap_ top watermark sort
from table(mon_get_database (-2))) usage
select sort_ops,
overflows, -
(overflows * 100) / nullif (sort_ops,0) as pctoverflow,
sort_heap top
from ops;

@ If SORT_HEAP_TOP is near the

Extract
pcmnfdgl.of
sort operations
that have
spilled and high

configured SHEAPTHRES_SHR it
SORT_OPS OVERFLOWS PCTOVERELOW __SORT _HEAP_TOP / e et s, SSPTERAN &
1200 300 { 25 .'/12777216\:/ overconfigured relative to our
/ S P concurrency limits

About 25% of our sort operations
overflowed and spilled indicating some
tuning may be worthwhile

The example above shows how you can monitor both the high watermark sort consumption on your
database, and the percentage of operators that are spilling during query execution. Note that we are only

including the largest sort consumers in this example as they are generally responsible for the vast majority
of sort memory consumption.

This query will allow you to determine two things; first the percentage of operations that are spilling

which will tell you how often spilling is impacting your queries and hence whether it’s a potential cause of
performance problems.

The high watermark will tell you whether the spilling is being triggered because we are exhausting the
overall sort memory on the database. If not it’s an indication that the SORTHEAP size is too constrained
for some queries to execute. Both cases are an indication you might want to consider adjusting the
SORTHEAP in conjunction with the WLM concurrency limit (we need to adjust both together because the
larger our sortheap is, the fewer queries we can accommodate at a time).

l. IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

@ Leading the DB2 User
Community since 1988

Monitoring Query Sort Usage and Consumers

SELECT SORT_SHRHEAP TOP, ’
SORT_CONSUMER_SHRHEAP_TOP,

ACTIVE SORT CONSUMERS TOP, 777 77=======---- Sort usage + biggest individual
NUM_EXECUTIONS, - consumer + active consumers
(TOTAL_SORTS + |
TOTAL HASH JOINS + __.--- Aggregate sort operators
TOTAL_HASH GRPBYS + PRI

TOTAL COL_VECTOR_CONSUMERS) AS SORT_OPS, S e
(SORT_OVERFLOWS + I
HASH_JOIN_OVERFLOWS + ____===="
HASH_GRPBY_OVERFLOWS) AS SORT_OVERFLOWS, *~ |
(POST_THRESHOLD_SORTS +
POST_THRESHOLD HASH_JOINS +
POST_THRESHOLD HASH_GREBYS +
POST_THRESHOLD_COL_VECTOR_CONSUMERS) AS THROTTLED_SORT_OPS,
SUBSTR (STMT_TEXT, 1,255) AS STMT_TEXT

FROM TABLE (MON_GET_PKG_CACHE STMT (NULL, NULL, NULL,-2))

Aggregate throttled sort
" operators

Total :
e :;SSI:S* 4 distinet sort consumers
usage op?n’fof‘ in this query

SORT_SHRHEAP_TOP S/{RT CONSUMER_SHRTHEAP TO% ACTIVE SORT_CONSUMERS_TOP . STMT TEXT

i 262144 i 131072 < 4 ,WITH OPS AS (SELECT ..

The example above shows how you can monitor sort memory usage and consumers
per query.

*SORT_SHRHEAP_TOP reports the total memory used for an execution of the
query and indicates its impact on SHEAPTHRES_SHR

*SORT_CONSUMER_HEAP_TOP indicates the largest single sort operator in the
query and can be related to the configured SORTHEAP

*ACTIVE_SORT_CONSUMERS_TOP indicates the total number of concurrent
sort operators per execution of the query

*We also include the aggregate counts for all sort operators across all executions of
the query as well as the related number of operators throttled, and that overflowed /
spilled to disk.

When taken together these metrics give a good indication of the memory footprint
of the query and whether it’s being constrained due to memory limits in either
SHEAPTHRES_SHR or SORTHEAP.

. 1DUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2
Leading the DB User Philadelphia, Pennsylvania | May 2015
Communty since 1968

Monitoring Default Workload Management for
Analytic Workloads

';é IDUG IDUG DB2 North America Tech Conference ¥ #IDUG

@ [L:cac:gnt"claz LN:5
Resource Usage and Concurrency

e BLU philosophy is to leverage full machine resources (memory, CPU
parallelism, etc.) in order to achieve order of magnitude
performance benefits

* Aconsequence of this is that running too many columnar queries at a time
can lead to significant resource competition and degrade performance

« Too many queries executing at a time can also have the potential to
overload systemresources and cause failures

¢ Some form of query concurrency managementis needed to ensure orderly
and efficient execution of columnar queries

Part of the philosophy underlying the BLU Acceleration technology is that it tries to
leverage the full machine resources in order to process as quickly / efficiently as possible
and achieve its order of magnitude performance benefits. Basically BLU queries assume
they have access to the full machine hardware and will take advantage of this to run fast. As
a consequence though, columnar queries are relatively heavy on machine resource usage.
Having too many columnar queries running at the same time on a system could theoretically
lead to performance degradation, and even push the system beyond its resource limits
causing query failures. Some form of control on query execution is required to ensure
orderly execution of columnar queries.

2.1 DUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

@ Leading the DB2 User
Community since 1988

Solution: Default Workload Management

* Allow unlimited query concurrency from a user perspective

* Internally manage query execution so that we execute only a
limited number of queries at a time

Prevents overload / system remains robust in face of heavy workloads;
SORTHEAP can be tuned with predictable concurrency limits in mind

Optimizes performance; ensures that when queries execute we have

/ sufficient resources for them to complete quickly (allows more memory
and more intra-query parallelism without causing spilling or overloading
the processor run queues)

To avoid these performance and stability problems BLU Acceleration comes with a
Default Workload Management scheme enabled. At a high level the concept is
relatively straightforward; from a user perspective we allow unlimited query
concurrency as usual. Internally though we manage query execution so that we
execute only a limited number of queries at a time. This gives us two key benefits:

*First since we know the query concurrency limit we can configure an appropriate
default SORTHEAP, and achieve predictable memory consumption which ensures
stability even in the face of significant workload spikes.

*Second, allowing only a managed number of queries to execute a time reduces
resource contention ensuring queries get the resources they need to execute quickly
and generally avoid costly spilling. This means that your throughput will be
improved and even considering queue time your queries will likely execute faster.

’5& IDUG IDUG DB2 North America Tech Conference

z&' Leading the DB2 User
Community since 1988

Default Workload Management
 Reod DML w/ query .
User Requests | 150000 timerons » DefaultUser ServiceClass D82
(<]

i mapped to managed

° o4 ! class

t

0o © N .
. 1 ' “_ || Default Subclass |
e’ ® 1 2\l (Unmanaged /|
o .. : Default i Lightweight Queries)
0o’ ® : Workload :
I j S — :
Q0 :
o o% Default
00" ©° “Managed” /1 Concurrency™,
Subclass “r* T'hr?ShOId
(Managed / y Limit=N
Heavyweight e
Read Queries) ! !

i
Amount of
executing work

! managed based on
--- its resource
footprint

This slide show the default workload management for BLU in more detail:

*We split statements submitted to the system into two categories; unmanaged and
managed.

*Read-only queries with an estimated cost of > 150000 timerons are mapped to the
managed class.

*We apply a concurrency limit to the managed class which is computed at database
creation time based on the machine hardware and CPU parallelism to ensure orderly
execution of heavier weight analytic queries.

*Note that you can recompute this value if your system configuraiton changes by
rerunning AUTOCONFIGURE.

The result is that :

*Heavy queries are queued and only N are executed concurrently allowing them to
maximize their memory consumption / CPU parallelism and complete more quickly
as well as preventing system overload.

*We maintain the response time of lightweight point queries by allowing them to
bypass the control and avoid queueing behind large queries; these queries have a
much smaller resource impact on the system so we let them pass through as quickly
as possible.

*Other activities (DDL, Utilities, ETL) continue to be unmanaged. If managing
these is desirable the WLM environment can be customized further.

’? IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

Leading the DB2 User
Community since 1988

Monitoring the Default Workload Management
Configuration

* Examine the default estimated cost setting

SELECT VALUEl AS EXPENSIVE_ QUERY_ COST
FROM SYSCAT.WORKCLASSATTRIBUTES
WHERE WORKCLASSNAME = 'SYSMANAGEDQUERIES' AND TYPE = 'TIMERONCOST

EXPENSIVE QUERY COST

+1.50000000000000E+005

* Examine the default concurrency threshold settings

SELECT MAXVALUE, ENABLED
FROM SYSCAT.THRESHOLDS
WHERE THRESHOLDNAME = 'SYSDEFAULTCONCURRENT‘

MAXVALUE ENABLED

11 Y

Above we show how to query the settings for the default workload management
configuration:

*The default estimated cost setting can be queried from the
SYSCAT.WORKCLASSATTRIBUTES catalog table

*The default concurrenty threshold setting can be queried from the
SYSCAT.THRESHOLDS catalog table

IDUG IDUG DB2 North America Tech Conference ¥ #IDUGDB2

a Leading the DB2 User Philadelphia, Pennsylvania | May 2015

Community since 1988

Monitoring the Default Workload Management
Behavior

* Examine query cost estimates and wim queue time

SELECT QUERY COST_ESTIMATE,

WEMEOUEUERTIMERTOTAT ME S SIS Queue time
WLM_QUEUE_ASSIGNMENTS TOTAL,
COORD_STMT EXEC TIME, - oo Total elapsed time

NUM_EXECUTIONS,
SUBSTR (STMT_TEXT,1,255) AS STMT TEXT
FROM TABLE (MON_GET_PKG_CACHE_STMT (NULL, NULL, NULL, -2))

» List all active queries and their queuing state

SELECT SUBSTR(STMT_TEXT,1,255) AS STMT_ TEXT,
ACTIVITY STATE, < ---------------mmmmmmmmmmmommmmmemoo Queuing state
ELAPSED TIME_ SEC

FROM SYSIBMADM.MON_ CURRENT_ SQL

40

’— IDUG IDUG DB2 North America Tech Conference W) #IDUGDB2

@ Leading the DB2 User
Community since 1988

Questions?

| DUG IDUG DB2 North America Tech Conference ¥ #1DUGDS2
‘ Leading the DB2 User Philadelphia, Pennsylvania | May 2015
Community since 1988

DB2 BLU Resources

* BLU Best Practices Paper

* https://www.ibm.com/developerworks/community/wikis/home?lang=
en#t!/wiki/Wc9a068d7f6a6 4434 aece 0d297ea80abl/page/Optimizin
g%20analytic%20workloads%20using%20DB2%2010.5%20with%20BLU

%20Acceleration
* DB2 Monitoring Enhancements for BLU Acceleration
« http://www.ibm.com/developerworks/data/library/techarticle/dm-
1407monitor-bluaccel/index.html
* Related IDUG sessions
* The Latest in Advanced Performance Diagnostics for SQL (D08)

2. 1DUG IDUG DB2 North America Tech Conference ¥y #IDUGDB2

@ﬁ Leading the DB2 User
Community since 1988

David Kalmuk
IBM
dckalmuk@ca.ibm.com

D19

Monitoring BLU Acceleration In Depth Please fill out\your,session,
evaluation before’leaving!

David Kalmuk is a Senior Architect and IBM STSM with responsibility for the
Workload Management, Monitoring, and Systems areas of the DB2 for LUW
product. David has contributed to the development of numerous technologies in
DB2 over the years including the BLU Acceleration technology in DB2 10.5,
Workload Management capabilities in DB2 10, the Performance Monitoring
capabilities in DB2 9.7, as well as much of DB2’s Processing and Communications
architecture. He is currently leading new development efforts related to the BLU
Acceleration technology. David has been a member of the DB2 team since 2000.

43

