
© 2012 IBM CorporationJune 27, 2012

The DB2Night Show Episode
#89

InfoSphere Warehouse V10
Performance Enhancements

Pat Bates, WW Technical Sales for Big Data and Warehousing, jpbates@us.ibm.com

June 27, 2012



© 2012 IBM Corporation5

Multi-Core Parallelism Improvements

What is new?

– Starting in DB2 10

• Greater flexibility in controlling degree of parallelism through WLM for concurrent
running applications and workloads

• Better built-in runtime decision of parallelism degree when ANY is specified
• DB2 10 reduces overhead for queries with no parallelism (DEGREE=1)

• New REBAL plan operator rebalances work among subagents
• Contention on various latches alleviated or eliminated

How to enable Multi-Core Parallelism?

– Multi-core parallelism is enabled by simply turning on the INTRA_PARALLEL
dbm configuration parameter [YES, NO] and setting the degree of parallelism
• DFT_DEGREE db configuration parameter
• SET CURRENT DEGREE [ANY,1,..,n]
• BIND parameter DEGREE [ANY,1,..,n]
• ALTER WORKLOAD myworkload MAXIMUM DEGREE [ANY,1..n]



© 2012 IBM Corporation6

Greater Flexibility in Controlling Multi-Core Parallelism

Enable/disable parallelism within a database application

Controlling maximum parallelism degree through DB2
workload manager
– Set the MAXIMUM DEGREE workload attribute

– Only affects workload myworkload

– Takes effect at transaction boundary
• NO instance or database recycle

Precedence Order
– WLM: MAXIMUM DEGREE
– Stored Procedure: ADMIN_SET_INTRA_PARALLEL
– Instance level configuration parameter: INTRA_PARALLEL

CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL (‘YES’|‘NO’)

ALTER WORKLOAD myworkload MAXIMUM DEGREE 2



© 2012 IBM Corporation7

Parallelism and Workload Imbalance

Data filtering and data skew can cause workloads between subagents to
become imbalanced

Rebalance (REBAL) operator is a new access plan operator
– A mechanism for transferring rows between subagents to rebalance their workload
– Light weight mechanism for rebalance
– This operator puts underutilized subagents to work

Parallel plan with unbalanced
workload

Rebalanced data stream

NLJN

IXScan

Index: X1

Fetch

IXScan Table: T1

Index: X1

LTQ

NLJN

IXScan

Index: X1

Fetch

IXScan Table: T1

Index: X1

LTQ

REBAL

Only one
CPU is
busy

Data redistributed
equally among
the subagents



© 2012 IBM Corporation10

Index:
(c1, c2) [c1: gap column; c2 non-gap column]

Query:
SELECT info
FROM TPCD.LINEITEM T
WHERE T.c2 = 10 (Equality Predicate on c2)

(No predicate on c1 unconstrained gap)

Jump Scan
What is Jump Scan?

– Improvement to avoid large and expensive
index scans when the index has gaps

When does Jump Scan work best?

– In data warehouse and SAP
environments where query predicates
leave gaps in the index, which slows
down the index scanning process &
leads to poor query performance

– When the gap column has small
cardinality (= number of distinct values
that exist for the gap) and the non-gap
column predicate is highly selective

– Ideal case example
• c1 has 10 distinct values
• c2 contains a million distinct values,

10 of which satisfy the query predicate.

Why do we need Jump Scan?

– Difficult to find optimal set of indexes & optimize
workloads with many ad-hoc queries

– ad-hoc queries often have gaps in composite indexes

– Jump Scan improves performance of Index Scans
with gaps in the index

– Avoids the need for additional indexes



© 2012 IBM Corporation11

Jump Scan – How Does it Work?

Index Scan with Gap (before DB2 10) Index Scan with Gap (with Jump Scan)

SELECT * FROM orders WHERE product_id = 10 AND order_amnt = 898

GAP

Composite Index (product_id, order_location, order_amnt)

DB2 scans a huge range of the index between
start/stop keys while applying predicates to
locate qualifying keys

Queries against tables with composite (multi-
column) indexes present a challenge when the
query results in a gap (constrained
or unconstrained)

Index manager skips forward through the
index while bypassing large sections that will
not yield any results

Processing involves two related scans
– Positioning: fills in the missing key parts
– Consuming: locates matching keys



© 2012 IBM Corporation12

Smart Data and Smart Index Prefetching
(Data and Index page Sequential Detection + Read Ahead (SD+RA))

What is Smart Data/Index Prefetching?

– New Prefetching types in DB2 10 that switches
between DB2’s original Sequential Detection
Prefetching (SD) to Read Ahead Prefetching
when tables and indexes become unclustered

– Uses the index to determine which index and
data pages are accessed next (in contrast to SD,
which guesses which pages are needed in
the future)

When does it work best?

– When tables get very disorganized (e.g. through
frequent IUD operations)

Why do we need Smart Data /
Index Prefetching?

– Effective Pre-fetching is critical for MCP

– Without pre-fetching, all subagents might
wait while one performs I/O

– Maximize data page prefetching and improve
performance of IXSCAN and
IXSCAN/FETCH for imperfectly
clustered tables

– Minimize need for table REORGs

– Increase IXSCAN and IXSCAN/FETCH
performance consistency independent from
the degree of table and index organizationFetch

IXScan Table: T1

Index: X1



© 2012 IBM Corporation15

Star Schema Defined

What is Star Schema?
– Simplest form of a dimensional model

How the data is organized?
– Facts
– Dimensions

A typical star schema based query
– Joins a subset of the dimensions

with the fact tables
– In a snowflake schema there may also be

joins between dimension tables

Better performance
– Improves the performance of queries in data

warehouse or data mart environments

Reduces the total cost of ownership
– Less complex tuning actions throughout the entire

application life cycle

Sales

Date_Id
Store_Id
Product_Id
Units_Sold

Id
Date
Day
Month
Quarter
Year

Date

Store

Id
Store_Number
Province
Country

Product

Id
EAN_Code
Product_Name
Brand
Category

Id
Name
Company

Account

Fact table

Dimension
table

Snowflakes



© 2012 IBM Corporation16

Star Schema Enhancements in InfoSphere Warehouse 10

New star schema detection method
– Allows the query optimizer to detect stars based on unique attributes

• Primary keys, unique indexes, or unique constraints

New zigzag join method
– Provides consistent query performance in warehousing environments

Supports multiple fact table queries

Exploits indexes even when there is a gap in probing key

Optim Query Workload Tuner helps to determine optimal multi-
columns indexes to enable the zigzag join



© 2012 IBM Corporation17

Zigzag Join
What is zigzag join?

– A new join method for complex queries on
dimensional schemas

– Works for star schema queries in single or
multiple subject areas with snowflakes

– Works seamlessly with serial or DPF
databases, range-partitioned and MDC
tables

– Simple index adviser integrated with
db2exfmt and OQT to help with fact table
index design and get best performance
from zigzag join

Why do we need zigzag join?

– Improved query performance

– More stable performance that is less
sensitive to small query or configuration
changes

– Easier logical database design

When can DB2 use zigzag join?

– Joins between fact table(s) and dimension
tables on dimension unique keys

– Fact table must have a multicolumn index
that contains at least two of the join keys
used in the query

ZZJOIN

IXScanTable: T2

Index: t1_t2

Table: T1



© 2012 IBM Corporation22

Improved Performance of Queries

View the new operators added as part of PED and PEA processing in EXPLAIN
NEW values added to the EXPLAIN_ARGUMENT table

– Indicate queries using the new hashing function
– ARGUMENT_TYPE column = UNIQUE
– ARGUMENT_VALUE column: HASHED_PARTIAL

SELECT DISTINCT c11, c12, c21, c22

FROM Table1, Table2

WHERE c11 = c21
db2exfmt output access plan details

pUnique in the
access plan
signifies the PED
operation



© 2012 IBM Corporation23

RUNSTATS Enhancements

Index sampling
– In DB2 9.7 only data pages can be sampled
– Global indexes on range-partitioned tables can be very large
– All partitions of a partitioned index are read in DB2 9.7

Performance improvements
– Path length reduction

• RUNSTATS is very CPU-intensive

– Use new index readahead prefetching capability
• More efficient I/O when sequential detect prefetching isn’t possible

Usability improvements
– Specifying table or index schema will be optional
– Support VIEW keyword
– Make SAMPLED the default when DETAILED is specified

• SAMPLED DETAILED is currently the recommended index option
• Similar changes to CREATE INDEX … COLLECT STATISTICS clause

23



© 2012 IBM Corporation25

RUNSTATS Index Sampling

25

>>-RUNSTATS ON--+-TABLE-+--object-name-------------------------->
'-VIEW--'

....

>--+----------------------------+--+----------------------------+--->
'-| Table Sampling Options |-' '-| Index Sampling Options |-'

Table Sampling Options
|--TABLESAMPLE--+-BERNOULLI-+--(--numeric-literal--)------------>

'-SYSTEM----'
>--+-----------------------------------+------------------------|

'-REPEATABLE--(--integer-literal--)-'

Index Sampling Options
|--INDEXSAMPLE--+-BERNOULLI-+--(--numeric-literal--)------------|

'-SYSTEM----'


